Spaces:
Running
on
Zero
Running
on
Zero
from typing import Tuple, Union | |
import torch | |
from wenet.transformer.subsampling import BaseSubsampling | |
class IdentitySubsampling(BaseSubsampling): | |
""" Paraformer subsampling | |
""" | |
def __init__(self, idim: int, odim: int, dropout_rate: float, | |
pos_enc_class: torch.nn.Module): | |
super().__init__() | |
_, _ = idim, odim | |
self.right_context = 6 | |
self.subsampling_rate = 6 | |
self.pos_enc = pos_enc_class | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
offset: Union[torch.Tensor, int] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time | |
torch.Tensor: positional encoding | |
""" | |
# NOTE(Mddct): Paraformer starts from 1 | |
if isinstance(offset, torch.Tensor): | |
offset = torch.add(offset, 1) | |
else: | |
offset = offset + 1 | |
x, pos_emb = self.pos_enc(x, offset) | |
return x, pos_emb, x_mask | |
def position_encoding(self, offset: Union[int, torch.Tensor], | |
size: int) -> torch.Tensor: | |
return self.pos_enc.position_encoding(offset + 1, size) | |