Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University) | |
# 2023 Voicecomm Inc (Kai Li) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""MLP with convolutional gating (cgMLP) definition. | |
References: | |
https://openreview.net/forum?id=RA-zVvZLYIy | |
https://arxiv.org/abs/2105.08050 | |
""" | |
from typing import Tuple | |
import torch | |
import torch.nn as nn | |
from wenet.utils.class_utils import WENET_ACTIVATION_CLASSES | |
class ConvolutionalSpatialGatingUnit(torch.nn.Module): | |
"""Convolutional Spatial Gating Unit (CSGU).""" | |
def __init__( | |
self, | |
size: int, | |
kernel_size: int, | |
dropout_rate: float, | |
use_linear_after_conv: bool, | |
gate_activation: str, | |
causal: bool = True, | |
): | |
super().__init__() | |
# split input channels | |
n_channels = size // 2 | |
self.norm = nn.LayerNorm(n_channels) | |
# self.lorder is used to distinguish if it's a causal convolution, | |
# if self.lorder > 0: it's a causal convolution, the input will be | |
# padded with self.lorder frames on the left in forward. | |
# else: it's a symmetrical convolution | |
if causal: | |
padding = 0 | |
self.lorder = kernel_size - 1 | |
else: | |
# kernel_size should be an odd number for none causal convolution | |
assert (kernel_size - 1) % 2 == 0 | |
padding = (kernel_size - 1) // 2 | |
self.lorder = 0 | |
self.conv = torch.nn.Conv1d( | |
n_channels, | |
n_channels, | |
kernel_size, | |
1, | |
padding, | |
groups=n_channels, | |
) | |
if use_linear_after_conv: | |
self.linear = torch.nn.Linear(n_channels, n_channels) | |
else: | |
self.linear = None | |
if gate_activation == "identity": | |
self.act = torch.nn.Identity() | |
else: | |
self.act = WENET_ACTIVATION_CLASSES[gate_activation]() | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
def espnet_initialization_fn(self): | |
torch.nn.init.normal_(self.conv.weight, std=1e-6) | |
torch.nn.init.ones_(self.conv.bias) | |
if self.linear is not None: | |
torch.nn.init.normal_(self.linear.weight, std=1e-6) | |
torch.nn.init.ones_(self.linear.bias) | |
def forward( | |
self, x: torch.Tensor, cache: torch.Tensor = torch.zeros((0, 0, 0)) | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Forward method | |
Args: | |
x (torch.Tensor): (batch, time, channels) | |
cache (torch.Tensor): left context cache, it is only | |
used in causal convolution (#batch, channels, cache_t), | |
(0, 0, 0) meas fake cache. | |
Returns: | |
out (torch.Tensor): (batch, time, channels/2) | |
""" | |
x_r, x_g = x.chunk(2, dim=-1) | |
# exchange the temporal dimension and the feature dimension | |
x_g = x_g.transpose(1, 2) # (#batch, channels, time) | |
if self.lorder > 0: | |
if cache.size(2) == 0: # cache_t == 0 | |
x_g = nn.functional.pad(x_g, (self.lorder, 0), 'constant', 0.0) | |
else: | |
assert cache.size(0) == x_g.size(0) # equal batch | |
assert cache.size(1) == x_g.size(1) # equal channel | |
x_g = torch.cat((cache, x_g), dim=2) | |
assert (x_g.size(2) > self.lorder) | |
new_cache = x_g[:, :, -self.lorder:] | |
else: | |
# It's better we just return None if no cache is required, | |
# However, for JIT export, here we just fake one tensor instead of | |
# None. | |
new_cache = torch.zeros((0, 0, 0), | |
dtype=x_g.dtype, | |
device=x_g.device) | |
x_g = x_g.transpose(1, 2) | |
x_g = self.norm(x_g) # (N, T, D/2) | |
x_g = self.conv(x_g.transpose(1, 2)).transpose(1, 2) # (N, T, D/2) | |
if self.linear is not None: | |
x_g = self.linear(x_g) | |
x_g = self.act(x_g) | |
out = x_r * x_g # (N, T, D/2) | |
out = self.dropout(out) | |
return out, new_cache | |
class ConvolutionalGatingMLP(torch.nn.Module): | |
"""Convolutional Gating MLP (cgMLP).""" | |
def __init__( | |
self, | |
size: int, | |
linear_units: int, | |
kernel_size: int, | |
dropout_rate: float, | |
use_linear_after_conv: bool, | |
gate_activation: str, | |
causal: bool = True, | |
): | |
super().__init__() | |
self.channel_proj1 = torch.nn.Sequential( | |
torch.nn.Linear(size, linear_units), torch.nn.GELU()) | |
self.csgu = ConvolutionalSpatialGatingUnit( | |
size=linear_units, | |
kernel_size=kernel_size, | |
dropout_rate=dropout_rate, | |
use_linear_after_conv=use_linear_after_conv, | |
gate_activation=gate_activation, | |
causal=causal, | |
) | |
self.channel_proj2 = torch.nn.Linear(linear_units // 2, size) | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: torch.Tensor, | |
cache: torch.Tensor = torch.zeros((0, 0, 0)) | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Forward method | |
Args: | |
x (torch.Tensor): (batch, time, channels) | |
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time), | |
(0, 0, 0) means fake mask. Not used yet | |
cache (torch.Tensor): left context cache, it is only | |
used in causal convolution (#batch, channels, cache_t), | |
(0, 0, 0) meas fake cache. | |
Returns: | |
out (torch.Tensor): (batch, time, channels/2) | |
""" | |
xs_pad = x | |
# size -> linear_units | |
xs_pad = self.channel_proj1(xs_pad) | |
# linear_units -> linear_units/2 | |
xs_pad, new_cnn_cache = self.csgu(xs_pad, cache) | |
# linear_units/2 -> size | |
xs_pad = self.channel_proj2(xs_pad) | |
out = xs_pad | |
return out, new_cnn_cache | |