OSUM / wenet /transformer /encoder.py
tomxxie
适配zeroGPU
568e264
raw
history blame
24.3 kB
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
# 2022 Xingchen Song ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Encoder definition."""
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint as ckpt
from wenet.transformer.convolution import ConvolutionModule
from wenet.transformer.encoder_layer import TransformerEncoderLayer
from wenet.transformer.encoder_layer import ConformerEncoderLayer
from wenet.utils.class_utils import (
WENET_EMB_CLASSES,
WENET_MLP_CLASSES,
WENET_NORM_CLASSES,
WENET_SUBSAMPLE_CLASSES,
WENET_ATTENTION_CLASSES,
WENET_ACTIVATION_CLASSES,
)
from wenet.utils.mask import make_pad_mask
from wenet.utils.mask import add_optional_chunk_mask
from wenet.utils.common import mask_to_bias
class BaseEncoder(torch.nn.Module):
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "abs_pos",
normalize_before: bool = True,
static_chunk_size: int = 0,
use_dynamic_chunk: bool = False,
global_cmvn: torch.nn.Module = None,
use_dynamic_left_chunk: bool = False,
gradient_checkpointing: bool = False,
use_sdpa: bool = False,
layer_norm_type: str = 'layer_norm',
norm_eps: float = 1e-5,
):
"""
Args:
input_size (int): input dim
output_size (int): dimension of attention
attention_heads (int): the number of heads of multi head attention
linear_units (int): the hidden units number of position-wise feed
forward
num_blocks (int): the number of decoder blocks
dropout_rate (float): dropout rate
attention_dropout_rate (float): dropout rate in attention
positional_dropout_rate (float): dropout rate after adding
positional encoding
input_layer (str): input layer type.
optional [linear, conv2d, conv2d6, conv2d8]
pos_enc_layer_type (str): Encoder positional encoding layer type.
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
normalize_before (bool):
True: use layer_norm before each sub-block of a layer.
False: use layer_norm after each sub-block of a layer.
static_chunk_size (int): chunk size for static chunk training and
decoding
use_dynamic_chunk (bool): whether use dynamic chunk size for
training or not, You can only use fixed chunk(chunk_size > 0)
or dyanmic chunk size(use_dynamic_chunk = True)
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
dynamic chunk training
query_bias: whether use bias in attention.linear_q
key_bias: whether use bias in attention.linear_k, False for whisper models.
value_bias: whether use bias in attention.linear_v
gradient_checkpointing: rerunning a forward-pass segment for each
checkpointed segment during backward.
use_sdpa: whether to use SDPA, currently only support transformer for now
"""
super().__init__()
self._output_size = output_size
self.global_cmvn = global_cmvn
pos_emb_class = WENET_EMB_CLASSES[pos_enc_layer_type]
# NOTE(Mddct): head_dim == output_size // attention_heads for most of
# speech tasks, but for other task (LLM),
# head_dim == hidden_size * attention_heads. refactor later
self.embed = WENET_SUBSAMPLE_CLASSES[input_layer](
input_size, output_size, dropout_rate,
pos_emb_class(output_size, positional_dropout_rate)
if pos_enc_layer_type != 'rope_pos' else pos_emb_class(
output_size, output_size //
attention_heads, positional_dropout_rate))
assert layer_norm_type in ['layer_norm', 'rms_norm']
self.normalize_before = normalize_before
self.after_norm = WENET_NORM_CLASSES[layer_norm_type](output_size,
eps=norm_eps)
self.static_chunk_size = static_chunk_size
self.use_dynamic_chunk = use_dynamic_chunk
self.use_dynamic_left_chunk = use_dynamic_left_chunk
self.gradient_checkpointing = gradient_checkpointing
self.use_sdpa = use_sdpa
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs: torch.Tensor,
xs_lens: torch.Tensor,
decoding_chunk_size: int = 0,
num_decoding_left_chunks: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Embed positions in tensor.
Args:
xs: padded input tensor (B, T, D)
xs_lens: input length (B)
decoding_chunk_size: decoding chunk size for dynamic chunk
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
Returns:
encoder output tensor xs, and subsampled masks
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
masks: torch.Tensor batch padding mask after subsample
(B, 1, T' ~= T/subsample_rate)
NOTE(xcsong):
We pass the `__call__` method of the modules instead of `forward` to the
checkpointing API because `__call__` attaches all the hooks of the module.
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
"""
T = xs.size(1)
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
if self.global_cmvn is not None:
xs = self.global_cmvn(xs)
xs, pos_emb, masks = self.embed(xs, masks)
mask_pad = masks # (B, 1, T/subsample_rate)
chunk_masks = add_optional_chunk_mask(
xs,
masks,
self.use_dynamic_chunk,
self.use_dynamic_left_chunk,
decoding_chunk_size,
self.static_chunk_size,
num_decoding_left_chunks,
# Since we allow up to 1s(100 frames) delay, the maximum
# chunk_size is 100 / 4 = 25.
max_chunk_size=int(100.0 / self.embed.subsampling_rate))
if self.use_sdpa:
chunk_masks = mask_to_bias(chunk_masks, xs.dtype)
if self.gradient_checkpointing and self.training:
xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
mask_pad)
else:
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
if self.normalize_before:
xs = self.after_norm(xs)
# Here we assume the mask is not changed in encoder layers, so just
# return the masks before encoder layers, and the masks will be used
# for cross attention with decoder later
return xs, masks
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor) -> torch.Tensor:
for layer in self.encoders:
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
return xs
@torch.jit.unused
def forward_layers_checkpointed(self, xs: torch.Tensor,
chunk_masks: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor) -> torch.Tensor:
for layer in self.encoders:
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__,
xs,
chunk_masks,
pos_emb,
mask_pad,
use_reentrant=False)
return xs
def forward_chunk(
self,
xs: torch.Tensor,
offset: int,
required_cache_size: int,
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
""" Forward just one chunk
Args:
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
where `time == (chunk_size - 1) * subsample_rate + \
subsample.right_context + 1`
offset (int): current offset in encoder output time stamp
required_cache_size (int): cache size required for next chunk
compuation
>=0: actual cache size
<0: means all history cache is required
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
transformer/conformer attention, with shape
(elayers, head, cache_t1, d_k * 2), where
`head * d_k == hidden-dim` and
`cache_t1 == chunk_size * num_decoding_left_chunks`.
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
(elayers, b=1, hidden-dim, cache_t2), where
`cache_t2 == cnn.lorder - 1`
Returns:
torch.Tensor: output of current input xs,
with shape (b=1, chunk_size, hidden-dim).
torch.Tensor: new attention cache required for next chunk, with
dynamic shape (elayers, head, ?, d_k * 2)
depending on required_cache_size.
torch.Tensor: new conformer cnn cache required for next chunk, with
same shape as the original cnn_cache.
"""
assert xs.size(0) == 1
# tmp_masks is just for interface compatibility
tmp_masks = torch.ones(1,
xs.size(1),
device=xs.device,
dtype=torch.bool)
tmp_masks = tmp_masks.unsqueeze(1)
if self.global_cmvn is not None:
xs = self.global_cmvn(xs)
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
chunk_size = xs.size(1)
attention_key_size = cache_t1 + chunk_size
pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
size=attention_key_size)
if required_cache_size < 0:
next_cache_start = 0
elif required_cache_size == 0:
next_cache_start = attention_key_size
else:
next_cache_start = max(attention_key_size - required_cache_size, 0)
r_att_cache = []
r_cnn_cache = []
for i, layer in enumerate(self.encoders):
# NOTE(xcsong): Before layer.forward
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
if elayers == 0:
kv_cache = (att_cache, att_cache)
else:
i_kv_cache = att_cache[i:i + 1]
size = att_cache.size(-1) // 2
kv_cache = (i_kv_cache[:, :, :, :size], i_kv_cache[:, :, :,
size:])
xs, _, new_kv_cache, new_cnn_cache = layer(
xs,
att_mask,
pos_emb,
att_cache=kv_cache,
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
new_att_cache = torch.cat(new_kv_cache, dim=-1)
# NOTE(xcsong): After layer.forward
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
if self.normalize_before:
xs = self.after_norm(xs)
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
# ? may be larger than cache_t1, it depends on required_cache_size
r_att_cache = torch.cat(r_att_cache, dim=0)
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
return (xs, r_att_cache, r_cnn_cache)
def forward_chunk_by_chunk(
self,
xs: torch.Tensor,
decoding_chunk_size: int,
num_decoding_left_chunks: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
""" Forward input chunk by chunk with chunk_size like a streaming
fashion
Here we should pay special attention to computation cache in the
streaming style forward chunk by chunk. Three things should be taken
into account for computation in the current network:
1. transformer/conformer encoder layers output cache
2. convolution in conformer
3. convolution in subsampling
However, we don't implement subsampling cache for:
1. We can control subsampling module to output the right result by
overlapping input instead of cache left context, even though it
wastes some computation, but subsampling only takes a very
small fraction of computation in the whole model.
2. Typically, there are several covolution layers with subsampling
in subsampling module, it is tricky and complicated to do cache
with different convolution layers with different subsampling
rate.
3. Currently, nn.Sequential is used to stack all the convolution
layers in subsampling, we need to rewrite it to make it work
with cache, which is not prefered.
Args:
xs (torch.Tensor): (1, max_len, dim)
chunk_size (int): decoding chunk size
"""
assert decoding_chunk_size > 0
# The model is trained by static or dynamic chunk
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
subsampling = self.embed.subsampling_rate
context = self.embed.right_context + 1 # Add current frame
stride = subsampling * decoding_chunk_size
decoding_window = (decoding_chunk_size - 1) * subsampling + context
num_frames = xs.size(1)
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
outputs = []
offset = 0
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
# Feed forward overlap input step by step
for cur in range(0, num_frames - context + 1, stride):
end = min(cur + decoding_window, num_frames)
chunk_xs = xs[:, cur:end, :]
(y, att_cache,
cnn_cache) = self.forward_chunk(chunk_xs, offset,
required_cache_size, att_cache,
cnn_cache)
outputs.append(y)
offset += y.size(1)
ys = torch.cat(outputs, 1)
masks = torch.ones((1, 1, ys.size(1)),
device=ys.device,
dtype=torch.bool)
return ys, masks
class TransformerEncoder(BaseEncoder):
"""Transformer encoder module."""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "abs_pos",
normalize_before: bool = True,
static_chunk_size: int = 0,
use_dynamic_chunk: bool = False,
global_cmvn: torch.nn.Module = None,
use_dynamic_left_chunk: bool = False,
query_bias: bool = True,
key_bias: bool = True,
value_bias: bool = True,
activation_type: str = "relu",
gradient_checkpointing: bool = False,
use_sdpa: bool = False,
layer_norm_type: str = 'layer_norm',
norm_eps: float = 1e-5,
n_kv_head: Optional[int] = None,
head_dim: Optional[int] = None,
selfattention_layer_type: str = "selfattn",
mlp_type: str = 'position_wise_feed_forward',
mlp_bias: bool = True,
n_expert: int = 8,
n_expert_activated: int = 2,
):
""" Construct TransformerEncoder
See Encoder for the meaning of each parameter.
"""
super().__init__(input_size, output_size, attention_heads,
linear_units, num_blocks, dropout_rate,
positional_dropout_rate, attention_dropout_rate,
input_layer, pos_enc_layer_type, normalize_before,
static_chunk_size, use_dynamic_chunk, global_cmvn,
use_dynamic_left_chunk, gradient_checkpointing,
use_sdpa, layer_norm_type, norm_eps)
assert selfattention_layer_type in ['selfattn', 'rope_abs_selfattn']
activation = WENET_ACTIVATION_CLASSES[activation_type]()
mlp_class = WENET_MLP_CLASSES[mlp_type]
self.encoders = torch.nn.ModuleList([
TransformerEncoderLayer(
output_size,
WENET_ATTENTION_CLASSES[selfattention_layer_type](
attention_heads, output_size, attention_dropout_rate,
query_bias, key_bias, value_bias, use_sdpa, n_kv_head,
head_dim),
mlp_class(output_size,
linear_units,
dropout_rate,
activation,
mlp_bias,
n_expert=n_expert,
n_expert_activated=n_expert_activated),
dropout_rate,
normalize_before,
layer_norm_type=layer_norm_type,
norm_eps=norm_eps,
) for _ in range(num_blocks)
])
class ConformerEncoder(BaseEncoder):
"""Conformer encoder module."""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "rel_pos",
normalize_before: bool = True,
static_chunk_size: int = 0,
use_dynamic_chunk: bool = False,
global_cmvn: torch.nn.Module = None,
use_dynamic_left_chunk: bool = False,
positionwise_conv_kernel_size: int = 1,
macaron_style: bool = True,
selfattention_layer_type: str = "rel_selfattn",
activation_type: str = "swish",
use_cnn_module: bool = True,
cnn_module_kernel: int = 15,
causal: bool = False,
cnn_module_norm: str = "batch_norm",
query_bias: bool = True,
key_bias: bool = True,
value_bias: bool = True,
conv_bias: bool = True,
gradient_checkpointing: bool = False,
use_sdpa: bool = False,
layer_norm_type: str = 'layer_norm',
norm_eps: float = 1e-5,
n_kv_head: Optional[int] = None,
head_dim: Optional[int] = None,
mlp_type: str = 'position_wise_feed_forward',
mlp_bias: bool = True,
n_expert: int = 8,
n_expert_activated: int = 2,
):
"""Construct ConformerEncoder
Args:
input_size to use_dynamic_chunk, see in BaseEncoder
positionwise_conv_kernel_size (int): Kernel size of positionwise
conv1d layer.
macaron_style (bool): Whether to use macaron style for
positionwise layer.
selfattention_layer_type (str): Encoder attention layer type,
the parameter has no effect now, it's just for configure
compatibility.
activation_type (str): Encoder activation function type.
use_cnn_module (bool): Whether to use convolution module.
cnn_module_kernel (int): Kernel size of convolution module.
causal (bool): whether to use causal convolution or not.
key_bias: whether use bias in attention.linear_k, False for whisper models.
"""
super().__init__(input_size, output_size, attention_heads,
linear_units, num_blocks, dropout_rate,
positional_dropout_rate, attention_dropout_rate,
input_layer, pos_enc_layer_type, normalize_before,
static_chunk_size, use_dynamic_chunk, global_cmvn,
use_dynamic_left_chunk, gradient_checkpointing,
use_sdpa, layer_norm_type, norm_eps)
activation = WENET_ACTIVATION_CLASSES[activation_type]()
# self-attention module definition
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
query_bias,
key_bias,
value_bias,
use_sdpa,
n_kv_head,
head_dim,
)
# feed-forward module definition
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
mlp_bias,
n_expert,
n_expert_activated,
)
# convolution module definition
convolution_layer_args = (output_size, cnn_module_kernel, activation,
cnn_module_norm, causal, conv_bias)
mlp_class = WENET_MLP_CLASSES[mlp_type]
self.encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
WENET_ATTENTION_CLASSES[selfattention_layer_type](
*encoder_selfattn_layer_args),
mlp_class(*positionwise_layer_args),
mlp_class(*positionwise_layer_args) if macaron_style else None,
ConvolutionModule(
*convolution_layer_args) if use_cnn_module else None,
dropout_rate,
normalize_before,
layer_norm_type=layer_norm_type,
norm_eps=norm_eps,
) for _ in range(num_blocks)
])