OSUM / wenet /bin /alignment.py
tomxxie
适配zeroGPU
568e264
# Copyright (c) 2021 Mobvoi Inc. (authors: Di Wu)
# 2022 Tinnove Inc (authors: Wei Ren)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import copy
import logging
import os
import sys
import torch
import yaml
from torch.utils.data import DataLoader
from textgrid import TextGrid, IntervalTier
import math
from wenet.dataset.dataset import Dataset
from wenet.utils.ctc_utils import force_align
from wenet.utils.common import get_subsample
from wenet.utils.init_model import init_model
from wenet.utils.init_tokenizer import init_tokenizer
def generator_textgrid(maxtime, lines, output):
# Download Praat: https://www.fon.hum.uva.nl/praat/
interval = maxtime / (len(lines) + 1)
margin = 0.0001
tg = TextGrid(maxTime=maxtime)
linetier = IntervalTier(name="line", maxTime=maxtime)
i = 0
for l in lines:
s, e, w = l.split()
linetier.add(minTime=float(s) + margin, maxTime=float(e), mark=w)
tg.append(linetier)
print("successfully generator {}".format(output))
tg.write(output)
def get_frames_timestamp(alignment,
prob,
blank_thres=0.999,
thres=0.0000000001):
# convert alignment to a praat format, which is a doing phonetics
# by computer and helps analyzing alignment
timestamp = []
# get frames level duration for each token
start = 0
end = 0
local_start = 0
while end < len(alignment):
while end < len(alignment) and alignment[end] == 0:
end += 1
if end == len(alignment):
timestamp[-1] += alignment[start:]
break
end += 1
while end < len(alignment) and alignment[end - 1] == alignment[end]:
end += 1
local_start = end - 1
# find the possible front border for current token
while local_start >= start and (
prob[local_start][0] < math.log(blank_thres)
or prob[local_start][alignment[end - 1]] > math.log(thres)):
alignment[local_start] = alignment[end - 1]
local_start -= 1
cur_alignment = alignment[start:end]
timestamp.append(cur_alignment)
start = end
return timestamp
def get_labformat(timestamp, subsample):
begin = 0
begin_time = 0
duration = 0
labformat = []
for idx, t in enumerate(timestamp):
# 25ms frame_length,10ms hop_length, 1/subsample
subsample = get_subsample(configs)
# time duration
i = 0
while t[i] == 0:
i += 1
begin = i
dur = 0
while i < len(t) and t[i] != 0:
i += 1
dur += 1
begin = begin_time + begin * 0.01 * subsample
duration = dur * 0.01 * subsample
if idx < len(timestamp) - 1:
print("{:.2f} {:.2f} {}".format(begin, begin + duration,
char_dict[t[-1]]))
labformat.append("{:.2f} {:.2f} {}\n".format(
begin, begin + duration, char_dict[t[-1]]))
else: # last token
non_blank = 0
for i in t:
if i != 0:
token = i
break
print("{:.2f} {:.2f} {}".format(begin, begin + duration,
char_dict[token]))
labformat.append("{:.2f} {:.2f} {}\n".format(
begin, begin + duration, char_dict[token]))
begin_time += len(t) * 0.01 * subsample
return labformat
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='use ctc to generate alignment')
parser.add_argument('--config', required=True, help='config file')
parser.add_argument('--input_file', required=True, help='format data file')
parser.add_argument('--data_type',
default='raw',
choices=['raw', 'shard'],
help='train and cv data type')
parser.add_argument('--gpu',
type=int,
default=-1,
help='gpu id for this rank, -1 for cpu')
parser.add_argument('--device',
type=str,
default="cpu",
choices=["cpu", "npu", "cuda"],
help='accelerator to use')
parser.add_argument('--blank_thres',
default=0.999999,
type=float,
help='ctc blank thes')
parser.add_argument('--thres',
default=0.000001,
type=float,
help='ctc non blank thes')
parser.add_argument('--checkpoint', required=True, help='checkpoint model')
parser.add_argument('--dict', required=True, help='dict file')
parser.add_argument(
'--non_lang_syms',
help="non-linguistic symbol file. One symbol per line.")
parser.add_argument('--result_file',
required=True,
help='alignment result file')
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument('--gen_praat',
action='store_true',
help='convert alignment to a praat format')
parser.add_argument('--bpe_model',
default=None,
type=str,
help='bpe model for english part')
args = parser.parse_args()
print(args)
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s')
if args.gpu != -1:
# remain the original usage of gpu
args.device = "cuda"
if "cuda" in args.device:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
if args.batch_size > 1:
logging.fatal('alignment mode must be running with batch_size == 1')
sys.exit(1)
with open(args.config, 'r') as fin:
configs = yaml.load(fin, Loader=yaml.FullLoader)
# Load dict
char_dict = {}
with open(args.dict, 'r') as fin:
for line in fin:
arr = line.strip().split()
assert len(arr) == 2
char_dict[int(arr[1])] = arr[0]
eos = len(char_dict) - 1
# Init dataset and data loader
ali_conf = copy.deepcopy(configs['dataset_conf'])
ali_conf['filter_conf']['max_length'] = 102400
ali_conf['filter_conf']['min_length'] = 0
ali_conf['filter_conf']['token_max_length'] = 102400
ali_conf['filter_conf']['token_min_length'] = 0
ali_conf['filter_conf']['max_output_input_ratio'] = 102400
ali_conf['filter_conf']['min_output_input_ratio'] = 0
ali_conf['speed_perturb'] = False
ali_conf['spec_aug'] = False
ali_conf['spec_trim'] = False
ali_conf['shuffle'] = False
ali_conf['sort'] = False
ali_conf['fbank_conf']['dither'] = 0.0
ali_conf['batch_conf']['batch_type'] = "static"
ali_conf['batch_conf']['batch_size'] = args.batch_size
tokenizer = init_tokenizer(configs)
ali_dataset = Dataset(args.data_type,
args.input_file,
tokenizer,
ali_conf,
partition=False)
ali_data_loader = DataLoader(ali_dataset, batch_size=None, num_workers=0)
# Init asr model from configs
model, configs = init_model(args, configs)
device = torch.device(args.device)
model = model.to(device)
model.eval()
with torch.no_grad(), open(args.result_file, 'w',
encoding='utf-8') as fout:
for batch_idx, batch in enumerate(ali_data_loader):
print("#" * 80)
key, feat, target, feats_length, target_length = batch
feat = feat.to(device)
target = target.to(device)
feats_length = feats_length.to(device)
target_length = target_length.to(device)
# Let's assume B = batch_size and N = beam_size
# 1. Encoder
encoder_out, encoder_mask = model._forward_encoder(
feat, feats_length) # (B, maxlen, encoder_dim)
maxlen = encoder_out.size(1)
ctc_probs = model.ctc.log_softmax(
encoder_out) # (1, maxlen, vocab_size)
# print(ctc_probs.size(1))
ctc_probs = ctc_probs.squeeze(0)
target = target.squeeze(0)
alignment = force_align(ctc_probs, target)
fout.write('{} {}\n'.format(key[0], alignment))
if args.gen_praat:
timestamp = get_frames_timestamp(alignment, ctc_probs,
args.blank_thres, args.thres)
subsample = get_subsample(configs)
labformat = get_labformat(timestamp, subsample)
lab_path = os.path.join(os.path.dirname(args.result_file),
key[0] + ".lab")
with open(lab_path, 'w', encoding='utf-8') as f:
f.writelines(labformat)
textgrid_path = os.path.join(os.path.dirname(args.result_file),
key[0] + ".TextGrid")
generator_textgrid(maxtime=(len(alignment) + 1) * 0.01 *
subsample,
lines=labformat,
output=textgrid_path)