Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University) | |
# 2023 Voicecomm Inc (Kai Li) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""BranchformerEncoderLayer definition.""" | |
import torch | |
import torch.nn as nn | |
from typing import Optional, Tuple | |
from wenet.transformer.attention import T_CACHE | |
class BranchformerEncoderLayer(torch.nn.Module): | |
"""Branchformer encoder layer module. | |
Args: | |
size (int): model dimension | |
attn: standard self-attention or efficient attention, optional | |
cgmlp: ConvolutionalGatingMLP, optional | |
dropout_rate (float): dropout probability | |
merge_method (str): concat, learned_ave, fixed_ave | |
cgmlp_weight (float): weight of the cgmlp branch, between 0 and 1, | |
used if merge_method is fixed_ave | |
attn_branch_drop_rate (float): probability of dropping the attn branch, | |
used if merge_method is learned_ave | |
stochastic_depth_rate (float): stochastic depth probability | |
""" | |
def __init__( | |
self, | |
size: int, | |
attn: Optional[torch.nn.Module], | |
cgmlp: Optional[torch.nn.Module], | |
dropout_rate: float, | |
merge_method: str, | |
cgmlp_weight: float = 0.5, | |
attn_branch_drop_rate: float = 0.0, | |
stochastic_depth_rate: float = 0.0, | |
): | |
super().__init__() | |
assert (attn is not None) or ( | |
cgmlp is not None), "At least one branch should be valid" | |
self.size = size | |
self.attn = attn | |
self.cgmlp = cgmlp | |
self.merge_method = merge_method | |
self.cgmlp_weight = cgmlp_weight | |
self.attn_branch_drop_rate = attn_branch_drop_rate | |
self.stochastic_depth_rate = stochastic_depth_rate | |
self.use_two_branches = (attn is not None) and (cgmlp is not None) | |
if attn is not None: | |
self.norm_mha = nn.LayerNorm(size) # for the MHA module | |
if cgmlp is not None: | |
self.norm_mlp = nn.LayerNorm(size) # for the MLP module | |
self.norm_final = nn.LayerNorm( | |
size) # for the final output of the block | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
# # attention-based pooling for two branches | |
self.pooling_proj1 = torch.nn.Linear(size, 1) | |
self.pooling_proj2 = torch.nn.Linear(size, 1) | |
# # linear projections for calculating merging weights | |
self.weight_proj1 = torch.nn.Linear(size, 1) | |
self.weight_proj2 = torch.nn.Linear(size, 1) | |
if self.use_two_branches: | |
if self.merge_method == "concat": | |
self.merge_proj = torch.nn.Linear(size + size, size) | |
elif self.merge_method == "learned_ave": | |
# linear projection after weighted average | |
self.merge_proj = torch.nn.Linear(size, size) | |
elif self.merge_method == "fixed_ave": | |
assert (0.0 <= cgmlp_weight <= | |
1.0), "cgmlp weight should be between 0.0 and 1.0" | |
# remove the other branch if only one branch is used | |
if cgmlp_weight == 0.0: | |
self.use_two_branches = False | |
self.cgmlp = None | |
self.norm_mlp = None | |
elif cgmlp_weight == 1.0: | |
self.use_two_branches = False | |
self.attn = None | |
self.norm_mha = None | |
# linear projection after weighted average | |
self.merge_proj = torch.nn.Linear(size, size) | |
else: | |
raise ValueError(f"unknown merge method: {merge_method}") | |
else: | |
self.merge_proj = torch.nn.Identity() | |
def _forward( | |
self, | |
x: torch.Tensor, | |
mask: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
att_cache: T_CACHE = (torch.zeros( | |
(0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)), | |
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
stoch_layer_coeff: float = 1.0 | |
) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]: | |
# Two branches | |
x1 = x | |
x2 = x | |
# Branch 1: multi-headed attention module | |
if self.attn is not None: | |
x1 = self.norm_mha(x1) | |
x_att, new_att_cache = self.attn(x1, x1, x1, mask, pos_emb, | |
att_cache) | |
x1 = self.dropout(x_att) | |
# Branch 2: convolutional gating mlp | |
# Fake new cnn cache here, and then change it in conv_module | |
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
if self.cgmlp is not None: | |
x2 = self.norm_mlp(x2) | |
x2, new_cnn_cache = self.cgmlp(x2, mask_pad, cnn_cache) | |
x2 = self.dropout(x2) | |
# Merge two branches | |
if self.use_two_branches: | |
if self.merge_method == "concat": | |
x = x + stoch_layer_coeff * self.dropout( | |
self.merge_proj(torch.cat([x1, x2], dim=-1))) | |
elif self.merge_method == "learned_ave": | |
if (self.training and self.attn_branch_drop_rate > 0 | |
and torch.rand(1).item() < self.attn_branch_drop_rate): | |
# Drop the attn branch | |
w1, w2 = torch.tensor(0.0), torch.tensor(1.0) | |
else: | |
# branch1 | |
score1 = (self.pooling_proj1(x1).transpose(1, 2) / | |
self.size**0.5) | |
score1 = score1.masked_fill(mask_pad.eq(0), -float('inf')) | |
score1 = torch.softmax(score1, dim=-1).masked_fill( | |
mask_pad.eq(0), 0.0) | |
pooled1 = torch.matmul(score1, | |
x1).squeeze(1) # (batch, size) | |
weight1 = self.weight_proj1(pooled1) # (batch, 1) | |
# branch2 | |
score2 = (self.pooling_proj2(x2).transpose(1, 2) / | |
self.size**0.5) | |
score2 = score2.masked_fill(mask_pad.eq(0), -float('inf')) | |
score2 = torch.softmax(score2, dim=-1).masked_fill( | |
mask_pad.eq(0), 0.0) | |
pooled2 = torch.matmul(score2, | |
x2).squeeze(1) # (batch, size) | |
weight2 = self.weight_proj2(pooled2) # (batch, 1) | |
# normalize weights of two branches | |
merge_weights = torch.softmax(torch.cat([weight1, weight2], | |
dim=-1), | |
dim=-1) # (batch, 2) | |
merge_weights = merge_weights.unsqueeze(-1).unsqueeze( | |
-1) # (batch, 2, 1, 1) | |
w1, w2 = merge_weights[:, | |
0], merge_weights[:, | |
1] # (batch, 1, 1) | |
x = x + stoch_layer_coeff * self.dropout( | |
self.merge_proj(w1 * x1 + w2 * x2)) | |
elif self.merge_method == "fixed_ave": | |
x = x + stoch_layer_coeff * self.dropout( | |
self.merge_proj((1.0 - self.cgmlp_weight) * x1 + | |
self.cgmlp_weight * x2)) | |
else: | |
raise RuntimeError( | |
f"unknown merge method: {self.merge_method}") | |
else: | |
if self.attn is None: | |
x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x2)) | |
elif self.cgmlp is None: | |
x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x1)) | |
else: | |
# This should not happen | |
raise RuntimeError( | |
"Both branches are not None, which is unexpected.") | |
x = self.norm_final(x) | |
return x, mask, new_att_cache, new_cnn_cache | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
att_cache: T_CACHE = (torch.zeros( | |
(0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)), | |
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]: | |
"""Compute encoded features. | |
Args: | |
x (Union[Tuple, torch.Tensor]): Input tensor (#batch, time, size). | |
mask (torch.Tensor): Mask tensor for the input (#batch, time, time). | |
pos_emb (torch.Tensor): positional encoding, must not be None | |
for BranchformerEncoderLayer. | |
mask_pad (torch.Tensor): batch padding mask used for conv module. | |
(#batch, 1,time), (0, 0, 0) means fake mask. | |
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE | |
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size. | |
cnn_cache (torch.Tensor): Convolution cache in cgmlp layer | |
(#batch=1, size, cache_t2) | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time, time. | |
torch.Tensor: att_cache tensor, | |
(#batch=1, head, cache_t1 + time, d_k * 2). | |
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). | |
""" | |
stoch_layer_coeff = 1.0 | |
# with stochastic depth, residual connection `x + f(x)` becomes | |
# `x <- x + 1 / (1 - p) * f(x)` at training time. | |
if self.training: | |
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) | |
return self._forward(x, mask, pos_emb, mask_pad, att_cache, cnn_cache, | |
stoch_layer_coeff) | |