Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University) | |
# 2023 Voicecomm Inc (Kai Li) | |
# 2023 Lucky Wong | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""Encoder definition.""" | |
import torch | |
from typing import List, Optional, Union | |
from wenet.branchformer.encoder import LayerDropModuleList | |
from wenet.e_branchformer.encoder_layer import EBranchformerEncoderLayer | |
from wenet.branchformer.cgmlp import ConvolutionalGatingMLP | |
from wenet.transformer.encoder import ConformerEncoder | |
from wenet.utils.class_utils import ( | |
WENET_ACTIVATION_CLASSES, | |
WENET_ATTENTION_CLASSES, | |
WENET_MLP_CLASSES, | |
) | |
class EBranchformerEncoder(ConformerEncoder): | |
"""E-Branchformer encoder module.""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 256, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
selfattention_layer_type: str = "rel_selfattn", | |
pos_enc_layer_type: str = "rel_pos", | |
activation_type: str = "swish", | |
cgmlp_linear_units: int = 2048, | |
cgmlp_conv_kernel: int = 31, | |
use_linear_after_conv: bool = False, | |
gate_activation: str = "identity", | |
num_blocks: int = 12, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
input_layer: str = "conv2d", | |
stochastic_depth_rate: Union[float, List[float]] = 0.0, | |
static_chunk_size: int = 0, | |
use_dynamic_chunk: bool = False, | |
global_cmvn: torch.nn.Module = None, | |
use_dynamic_left_chunk: bool = False, | |
causal: bool = False, | |
merge_conv_kernel: int = 3, | |
use_ffn: bool = True, | |
macaron_style: bool = True, | |
query_bias: bool = True, | |
key_bias: bool = True, | |
value_bias: bool = True, | |
conv_bias: bool = True, | |
gradient_checkpointing: bool = False, | |
use_sdpa: bool = False, | |
layer_norm_type: str = 'layer_norm', | |
norm_eps: float = 1e-5, | |
n_kv_head: Optional[int] = None, | |
head_dim: Optional[int] = None, | |
mlp_type: str = 'position_wise_feed_forward', | |
mlp_bias: bool = True, | |
n_expert: int = 8, | |
n_expert_activated: int = 2, | |
): | |
super().__init__(input_size, | |
output_size, | |
attention_heads, | |
linear_units, | |
num_blocks, | |
dropout_rate, | |
positional_dropout_rate, | |
attention_dropout_rate, | |
input_layer, | |
pos_enc_layer_type, | |
True, | |
static_chunk_size, | |
use_dynamic_chunk, | |
global_cmvn, | |
use_dynamic_left_chunk, | |
1, | |
macaron_style, | |
selfattention_layer_type, | |
activation_type, | |
query_bias=query_bias, | |
key_bias=key_bias, | |
value_bias=value_bias, | |
conv_bias=conv_bias, | |
gradient_checkpointing=gradient_checkpointing, | |
use_sdpa=use_sdpa, | |
layer_norm_type=layer_norm_type, | |
norm_eps=norm_eps, | |
n_kv_head=n_kv_head, | |
head_dim=head_dim, | |
mlp_type=mlp_type, | |
mlp_bias=mlp_bias, | |
n_expert=n_expert, | |
n_expert_activated=n_expert_activated) | |
encoder_selfattn_layer_args = ( | |
attention_heads, | |
output_size, | |
attention_dropout_rate, | |
query_bias, | |
key_bias, | |
value_bias, | |
use_sdpa, | |
n_kv_head, | |
head_dim, | |
) | |
cgmlp_layer = ConvolutionalGatingMLP | |
cgmlp_layer_args = (output_size, cgmlp_linear_units, cgmlp_conv_kernel, | |
dropout_rate, use_linear_after_conv, | |
gate_activation, causal) | |
# feed-forward module definition | |
mlp_class = WENET_MLP_CLASSES[mlp_type] | |
activation = WENET_ACTIVATION_CLASSES[activation_type]() | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
dropout_rate, | |
activation, | |
mlp_bias, | |
n_expert, | |
n_expert_activated, | |
) | |
if isinstance(stochastic_depth_rate, float): | |
stochastic_depth_rate = [stochastic_depth_rate] * num_blocks | |
if len(stochastic_depth_rate) != num_blocks: | |
raise ValueError( | |
f"Length of stochastic_depth_rate ({len(stochastic_depth_rate)}) " | |
f"should be equal to num_blocks ({num_blocks})") | |
self.encoders = LayerDropModuleList( | |
p=stochastic_depth_rate, | |
modules=[ | |
EBranchformerEncoderLayer( | |
output_size, | |
WENET_ATTENTION_CLASSES[selfattention_layer_type]( | |
*encoder_selfattn_layer_args), | |
cgmlp_layer(*cgmlp_layer_args), | |
mlp_class(*positionwise_layer_args) if use_ffn else None, | |
mlp_class(*positionwise_layer_args) | |
if use_ffn and macaron_style else None, | |
dropout_rate, | |
merge_conv_kernel=merge_conv_kernel, | |
causal=causal, | |
stochastic_depth_rate=stochastic_depth_rate[lnum], | |
) for lnum in range(num_blocks) | |
]) | |