Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
def _sampler(pdf: torch.Tensor, num_samples: int, | |
device=torch.device('cpu')) -> torch.Tensor: | |
size = pdf.size() | |
z = -torch.log(torch.rand(size, device=device)) | |
_, indices = torch.topk(pdf + z, num_samples) | |
return indices | |
def compute_mask_indices( | |
size: torch.Size, | |
mask_prob: float, | |
mask_length: int, | |
min_masks: int = 0, | |
device=torch.device('cpu'), | |
) -> torch.Tensor: | |
assert len(size) == 2 | |
batch_size, seq_length = size | |
# compute number of masked span in batch | |
num_masked_spans = mask_prob * float(seq_length) / float( | |
mask_length) + torch.rand(1)[0] | |
num_masked_spans = int(num_masked_spans) | |
num_masked_spans = max(num_masked_spans, min_masks) | |
# num_masked <= seq_length | |
if num_masked_spans * mask_length > seq_length: | |
num_masked_spans = seq_length // mask_length | |
pdf = torch.ones(batch_size, seq_length - (mask_length - 1), device=device) | |
mask_idxs = _sampler(pdf, num_masked_spans, device=device) | |
mask_idxs = mask_idxs.unsqueeze(-1).repeat(1, 1, mask_length).view( | |
batch_size, | |
num_masked_spans * mask_length) # [B,num_masked_spans*mask_length] | |
offset = torch.arange(mask_length, device=device).view(1, 1, -1).repeat( | |
1, num_masked_spans, 1) # [1,num_masked_spans,mask_length] | |
offset = offset.view(1, num_masked_spans * mask_length) | |
mask_idxs = mask_idxs + offset # [B,num_masked_spans, mask_length] | |
ones = torch.ones(batch_size, | |
seq_length, | |
dtype=torch.bool, | |
device=mask_idxs.device) | |
# masks to fill | |
full_mask = torch.zeros_like(ones, | |
dtype=torch.bool, | |
device=mask_idxs.device) | |
return torch.scatter(full_mask, dim=1, index=mask_idxs, src=ones) | |
def compute_mask_indices_v2( | |
shape, | |
padding_mask, | |
mask_prob: float, | |
mask_length: int, | |
mask_type: str = 'static', | |
mask_other: float = 0.0, | |
min_masks: int = 2, | |
no_overlap: bool = False, | |
min_space: int = 1, | |
device=torch.device('cpu'), | |
): | |
bsz, all_sz = shape | |
mask = np.full((bsz, all_sz), False) | |
padding_mask = padding_mask.cpu().numpy() | |
all_num_mask = int( | |
# add a random number for probabilistic rounding | |
mask_prob * all_sz / float(mask_length) + np.random.rand()) | |
all_num_mask = max(min_masks, all_num_mask) | |
mask_idcs = [] | |
for i in range(bsz): | |
if padding_mask is not None and not isinstance(padding_mask, bytes): | |
sz = all_sz - padding_mask[i].sum() | |
num_mask = int( | |
# add a random number for probabilistic rounding | |
mask_prob * sz / float(mask_length) + np.random.rand()) | |
num_mask = max(min_masks, num_mask) | |
else: | |
sz = all_sz | |
num_mask = all_num_mask | |
if mask_type == 'static': | |
lengths = np.full(num_mask, mask_length) | |
elif mask_type == 'uniform': | |
lengths = np.random.randint(mask_other, | |
mask_length * 2 + 1, | |
size=num_mask) | |
elif mask_type == 'normal': | |
lengths = np.random.normal(mask_length, mask_other, size=num_mask) | |
lengths = [max(1, int(round(x))) for x in lengths] | |
elif mask_type == 'poisson': | |
lengths = np.random.poisson(mask_length, size=num_mask) | |
lengths = [int(round(x)) for x in lengths] | |
else: | |
raise Exception('unknown mask selection ' + mask_type) | |
if sum(lengths) == 0: | |
lengths[0] = min(mask_length, sz - 1) | |
if no_overlap: | |
mask_idc = [] | |
def arrange(s, e, length, keep_length, mask_idc): | |
span_start = np.random.randint(s, e - length) | |
mask_idc.extend(span_start + i for i in range(length)) | |
new_parts = [] | |
if span_start - s - min_space >= keep_length: | |
new_parts.append((s, span_start - min_space + 1)) | |
if e - span_start - keep_length - min_space > keep_length: | |
new_parts.append((span_start + length + min_space, e)) | |
return new_parts | |
parts = [(0, sz)] | |
min_length = min(lengths) | |
for length in sorted(lengths, reverse=True): | |
lens = np.fromiter( | |
(e - s if e - s >= length + min_space else 0 | |
for s, e in parts), | |
np.int, | |
) | |
l_sum = np.sum(lens) | |
if l_sum == 0: | |
break | |
probs = lens / np.sum(lens) | |
c = np.random.choice(len(parts), p=probs) | |
s, e = parts.pop(c) | |
parts.extend(arrange(s, e, length, min_length, mask_idc)) | |
mask_idc = np.asarray(mask_idc) | |
else: | |
min_len = min(lengths) | |
if sz - min_len <= num_mask: | |
min_len = sz - num_mask - 1 | |
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) | |
mask_idc = np.asarray([ | |
mask_idc[j] + offset for j in range(len(mask_idc)) | |
for offset in range(lengths[j]) | |
]) | |
mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) | |
min_len = min([len(m) for m in mask_idcs]) | |
for i, mask_idc in enumerate(mask_idcs): | |
if len(mask_idc) > min_len: | |
mask_idc = np.random.choice(mask_idc, min_len, replace=False) | |
mask[i, mask_idc] = True | |
mask = torch.from_numpy(mask).to(device) | |
return mask | |