OSUM / wenet /ssl /wav2vec2 /wav2vec2_model.py
tomxxie
适配zeroGPU
568e264
import math
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from wenet.ssl.bestrq.mask import compute_mask_indices_v2
from wenet.ssl.wav2vec2.quantizer import Wav2vecGumbelVectorQuantizer
from wenet.transformer.attention import RelPositionMultiHeadedAttention
from wenet.transformer.encoder import ConformerEncoder, TransformerEncoder
from wenet.transformer.encoder_layer import ConformerEncoderLayer
from wenet.utils.mask import make_non_pad_mask
def _sample_negative_indices(features_shape: Tuple,
num_negatives: int,
device: torch.device,
mask_time_indices: Optional[torch.Tensor] = None):
"""
Sample `num_negatives` vectors from feature vectors.
"""
batch_size, sequence_length = features_shape
sequence_length_range = torch.arange(sequence_length, device=device)
# get `num_negatives` random vector indices from the same utterance
sampled_negative_indices = torch.zeros(
(batch_size, sequence_length, num_negatives),
dtype=sequence_length_range.dtype,
device=device)
mask_time_indices = (mask_time_indices.bool()
if mask_time_indices is not None else torch.ones(
features_shape, dtype=torch.bool, device=device))
for batch_idx in range(batch_size):
high = mask_time_indices[batch_idx].sum() - 1
mapped_masked_indices = sequence_length_range[
mask_time_indices[batch_idx]]
feature_indices = torch.arange(high + 1).unsqueeze(1).expand(
high + 1, num_negatives)
sampled_indices = torch.randint(0,
high,
size=(high + 1, num_negatives))
sampled_indices[sampled_indices >= feature_indices] += 1
# remap to actual indices
sampled_negative_indices[batch_idx][mask_time_indices[
batch_idx]] = mapped_masked_indices[sampled_indices]
# correct for batch size
sampled_negative_indices[batch_idx] += batch_idx * sequence_length
return sampled_negative_indices.reshape(batch_size, -1)
def _compute_contrastive_loss(quantized_features: torch.Tensor,
features: torch.Tensor,
negative_indices: torch.Tensor,
mask_time_indices: torch.Tensor,
logits_temp: float,
num_negatives: int = 1):
batch_size, sequence_length, hidden_size = quantized_features.shape
# take negative vectors from sampled indices
quantized_negatives = quantized_features.view(
-1, hidden_size)[negative_indices.view(-1)]
quantized_negatives = quantized_negatives.view(batch_size, sequence_length,
num_negatives,
hidden_size).permute(
2, 0, 1, 3)
target_features = torch.cat(
[quantized_features.unsqueeze(0), quantized_negatives], dim=0)
loss_logits = F.cosine_similarity(features, target_features, dim=-1)
loss_logits = loss_logits / logits_temp
neg_is_pos = (quantized_features == quantized_negatives).all(-1)
neg_is_pos = torch.cat(
[
torch.full(
(1, ) + loss_logits.shape[1:], False,
device=neg_is_pos.device), neg_is_pos
],
dim=0,
)
# make sure incorrectly sampled vectors don't contribute to loss
loss_logits = torch.where(neg_is_pos, -1e9, loss_logits)
predictions = loss_logits.permute(2, 1, 0).reshape(-1,
loss_logits.shape[0])
targets = ((1 - mask_time_indices.long()) * -100).transpose(1, 0).flatten()
target_mask = torch.where(targets >= 0, 1.0, 0.0)
contrastive_loss = F.cross_entropy(
predictions, targets.long(), reduction='none') * target_mask
contrastive_loss = contrastive_loss.sum()
return contrastive_loss
class Wav2vec2Model(torch.nn.Module):
def __init__(
self,
encoder: Union[ConformerEncoder, TransformerEncoder],
embedding_dim: int = 256,
num_embeddings: int = 320,
num_codebooks: int = 1,
mask_prob: float = 0.065,
mask_length: int = 10,
min_masks: int = 2,
num_negatives: int = 100,
features_regularization_weight: float = 0.01,
max_gumbel_temperature: float = 2.0,
min_gumbel_temperature: float = 0.1,
gumbel_temperature_decay: float = 0.999995,
contrastive_logits_temperature: float = 0.1,
diversity_weight: float = 0.0,
) -> None:
""" Wrap encoder to train using wav2vec2's style
Args:
encoder: wenet's encoder,
only support conformer and transformer now
embedding_dim: codebooks embedding dim
num_embeddings: numbers of each codebook
num_codebooks: numbers of codebooks i.e groups of codebook
mask_prob: probs of mask
mask_length: spans of masks
min_maks: min masks for each audio
num_negatives: numbers of negatives of each masks
features_regularization_weight: l2 regularization weight
max_gumbel_temperature: maximum temperature for gumbel softmax
min_gumbel_temperature: minimum temperature for gumbel softmax
gumbel_temperature_decay:
decay of gumbel temperature during training
contrastive_logits_temperature:
the temperature in the contrastive loss.
"""
super().__init__()
assert mask_prob > 0.0
self.mask_prob = mask_prob
self.mask_length = mask_length
self.min_masks = min_masks
self.num_negatives = num_negatives
self.features_regularization_weight = features_regularization_weight
self.diversity_weight = diversity_weight
# encoder
self.encoder = encoder
# quantizer
self.quantizer = Wav2vecGumbelVectorQuantizer(
self.encoder.output_size(),
num_codebooks=num_codebooks,
num_embeddings=num_embeddings,
embedding_dim=embedding_dim,
hard=False,
)
self.max_gumbel_temp = max_gumbel_temperature
self.min_gumbel_temp = min_gumbel_temperature
self.gumbel_temp_decay = gumbel_temperature_decay
self.num_codevectors_per_group = num_embeddings
self.num_codevector_groups = num_codebooks
self.contrastive_logits_temp = contrastive_logits_temperature
self.mask_emb = torch.nn.parameter.Parameter(
torch.empty(self.encoder.output_size()).uniform_(),
requires_grad=True,
)
# TODO(Mddct): support causal or lookahead mask or keep consistent with
# wenet dynamic chunk training
# reset parameter
self.reset_encoder_parameter()
def reset_encoder_parameter(self):
def _reset_parameter(module: torch.nn.Module):
if isinstance(module, torch.nn.Linear):
torch.nn.init.trunc_normal_(module.weight.data,
mean=0.0,
std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, torch.nn.Conv1d):
torch.nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups /
(module.in_channels * module.kernel_size[0]))
torch.nn.init.uniform_(module.bias, a=-k, b=k)
elif isinstance(module, torch.Tensor):
torch.nn.init.trunc_normal_(module)
else:
raise NotImplementedError("other module not support now")
encoders = self.encoder.encoders
for _, layer in enumerate(encoders):
self_attn = layer.self_attn
_reset_parameter(self_attn.linear_q)
_reset_parameter(self_attn.linear_k)
_reset_parameter(self_attn.linear_v)
_reset_parameter(self_attn.linear_out)
if isinstance(self_attn, RelPositionMultiHeadedAttention):
_reset_parameter(self_attn.pos_bias_u)
_reset_parameter(self_attn.pos_bias_v)
if isinstance(layer, ConformerEncoderLayer):
conv1, conv2 = (layer.conv_module.pointwise_conv1,
layer.conv_module.depthwise_conv)
_reset_parameter(conv1)
_reset_parameter(conv2)
@torch.jit.unused
def forward(
self,
batch: Dict,
device: torch.device,
):
steps = batch.get('steps', None)
xs = batch['feats'].to(device)
xs_lens = batch['feats_lengths'].to(device)
assert xs.size(0) == xs_lens.size(0)
assert steps is not None
# 1 forward subsampling
# NOTE(Mddct): use subsampling as feature extraction
xs, pos_emb, masks = self._forward_subsampling(xs, xs_lens)
unmasked_xs = xs
# 2 mask features
masked_xs, masked_masks = self._apply_mask(xs, masks.squeeze(1))
# 3 forward encoder blocks
out, _ = self._forward_encoder_blocks(masked_xs, masks, pos_emb, masks)
gumbel_temperature = max(
self.max_gumbel_temp * self.gumbel_temp_decay**steps,
self.min_gumbel_temp)
quantized_features, codevector_perplexity, _ = self.quantizer(
unmasked_xs, masks.squeeze(1), gumbel_temperature)
sampled_negative_indices = _sample_negative_indices(
xs.size()[:-1], self.num_negatives, masked_masks.device,
masked_masks)
loss_contrastive = _compute_contrastive_loss(
quantized_features, out, sampled_negative_indices, masked_masks,
self.contrastive_logits_temp, self.num_negatives)
loss = loss_contrastive
# scale by sample size
# make sure that diversity loss is multiplied by `sample_size`
# since contrastive_loss is `sum`-reduced instead of averaged
sample_size = masked_masks.sum()
# higher codevector_perplexity leads to lower diversity loss
loss_diversity: Optional[torch.Tensor] = None
if self.diversity_weight != 0.0:
loss_diversity = (
self.num_codevector_groups * self.num_codevectors_per_group -
codevector_perplexity) / (self.num_codevectors_per_group *
self.num_codevector_groups)
loss_diversity = loss_diversity * sample_size
loss = loss + self.diversity_weight * loss_diversity
loss = loss / sample_size
features_pen: Optional[torch.Tensor] = None
if self.features_regularization_weight != 0.0:
features_pen = xs.pow(2).mean()
loss = loss + self.features_regularization_weight * features_pen
return {
"code_ppl": codevector_perplexity.detach(),
"features_l2": features_pen,
"loss": loss,
"loss_contrastive": loss_contrastive / sample_size,
"loss_diversity": loss_diversity,
}
def _apply_mask(
self, xs: torch.Tensor,
xs_masks: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
masks = compute_mask_indices_v2(xs.size()[:-1],
~xs_masks,
self.mask_prob,
self.mask_length,
min_masks=self.min_masks,
device=xs.device)
masks_expand = masks.unsqueeze(-1) # [B, T, 1]
mask_emb = self.mask_emb.to(xs.device).view(1, 1, -1)
xs = torch.where(masks_expand, mask_emb, xs)
return xs, masks
def _forward_subsampling(
self, xs: torch.Tensor, xs_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
masks = make_non_pad_mask(xs_lens).unsqueeze(1) # (B, 1, T)
if self.encoder.global_cmvn is not None:
xs = self.encoder.global_cmvn(xs)
xs, pos_emb, masks = self.encoder.embed(xs, masks)
return xs, pos_emb, masks
def _forward_encoder_blocks(self, xs: torch.Tensor, xs_masks: torch.Tensor,
pos_emb: torch.Tensor, mask_pad: torch.Tensor):
masks = xs_masks
for layer in self.encoder.encoders:
xs, masks, _, _ = layer(xs, xs_masks, pos_emb, mask_pad)
if self.encoder.normalize_before:
xs = self.encoder.after_norm(xs)
# Here we assume the mask is not changed in encoder layers, so just
# return the masks before encoder layers, and the masks will be used
# for cross attention with decoder later
return xs, masks