Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from typing import Dict, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
from wenet.ssl.bestrq.mask import compute_mask_indices_v2 | |
from wenet.ssl.wav2vec2.quantizer import Wav2vecGumbelVectorQuantizer | |
from wenet.transformer.attention import RelPositionMultiHeadedAttention | |
from wenet.transformer.encoder import ConformerEncoder, TransformerEncoder | |
from wenet.transformer.encoder_layer import ConformerEncoderLayer | |
from wenet.utils.mask import make_non_pad_mask | |
def _sample_negative_indices(features_shape: Tuple, | |
num_negatives: int, | |
device: torch.device, | |
mask_time_indices: Optional[torch.Tensor] = None): | |
""" | |
Sample `num_negatives` vectors from feature vectors. | |
""" | |
batch_size, sequence_length = features_shape | |
sequence_length_range = torch.arange(sequence_length, device=device) | |
# get `num_negatives` random vector indices from the same utterance | |
sampled_negative_indices = torch.zeros( | |
(batch_size, sequence_length, num_negatives), | |
dtype=sequence_length_range.dtype, | |
device=device) | |
mask_time_indices = (mask_time_indices.bool() | |
if mask_time_indices is not None else torch.ones( | |
features_shape, dtype=torch.bool, device=device)) | |
for batch_idx in range(batch_size): | |
high = mask_time_indices[batch_idx].sum() - 1 | |
mapped_masked_indices = sequence_length_range[ | |
mask_time_indices[batch_idx]] | |
feature_indices = torch.arange(high + 1).unsqueeze(1).expand( | |
high + 1, num_negatives) | |
sampled_indices = torch.randint(0, | |
high, | |
size=(high + 1, num_negatives)) | |
sampled_indices[sampled_indices >= feature_indices] += 1 | |
# remap to actual indices | |
sampled_negative_indices[batch_idx][mask_time_indices[ | |
batch_idx]] = mapped_masked_indices[sampled_indices] | |
# correct for batch size | |
sampled_negative_indices[batch_idx] += batch_idx * sequence_length | |
return sampled_negative_indices.reshape(batch_size, -1) | |
def _compute_contrastive_loss(quantized_features: torch.Tensor, | |
features: torch.Tensor, | |
negative_indices: torch.Tensor, | |
mask_time_indices: torch.Tensor, | |
logits_temp: float, | |
num_negatives: int = 1): | |
batch_size, sequence_length, hidden_size = quantized_features.shape | |
# take negative vectors from sampled indices | |
quantized_negatives = quantized_features.view( | |
-1, hidden_size)[negative_indices.view(-1)] | |
quantized_negatives = quantized_negatives.view(batch_size, sequence_length, | |
num_negatives, | |
hidden_size).permute( | |
2, 0, 1, 3) | |
target_features = torch.cat( | |
[quantized_features.unsqueeze(0), quantized_negatives], dim=0) | |
loss_logits = F.cosine_similarity(features, target_features, dim=-1) | |
loss_logits = loss_logits / logits_temp | |
neg_is_pos = (quantized_features == quantized_negatives).all(-1) | |
neg_is_pos = torch.cat( | |
[ | |
torch.full( | |
(1, ) + loss_logits.shape[1:], False, | |
device=neg_is_pos.device), neg_is_pos | |
], | |
dim=0, | |
) | |
# make sure incorrectly sampled vectors don't contribute to loss | |
loss_logits = torch.where(neg_is_pos, -1e9, loss_logits) | |
predictions = loss_logits.permute(2, 1, 0).reshape(-1, | |
loss_logits.shape[0]) | |
targets = ((1 - mask_time_indices.long()) * -100).transpose(1, 0).flatten() | |
target_mask = torch.where(targets >= 0, 1.0, 0.0) | |
contrastive_loss = F.cross_entropy( | |
predictions, targets.long(), reduction='none') * target_mask | |
contrastive_loss = contrastive_loss.sum() | |
return contrastive_loss | |
class Wav2vec2Model(torch.nn.Module): | |
def __init__( | |
self, | |
encoder: Union[ConformerEncoder, TransformerEncoder], | |
embedding_dim: int = 256, | |
num_embeddings: int = 320, | |
num_codebooks: int = 1, | |
mask_prob: float = 0.065, | |
mask_length: int = 10, | |
min_masks: int = 2, | |
num_negatives: int = 100, | |
features_regularization_weight: float = 0.01, | |
max_gumbel_temperature: float = 2.0, | |
min_gumbel_temperature: float = 0.1, | |
gumbel_temperature_decay: float = 0.999995, | |
contrastive_logits_temperature: float = 0.1, | |
diversity_weight: float = 0.0, | |
) -> None: | |
""" Wrap encoder to train using wav2vec2's style | |
Args: | |
encoder: wenet's encoder, | |
only support conformer and transformer now | |
embedding_dim: codebooks embedding dim | |
num_embeddings: numbers of each codebook | |
num_codebooks: numbers of codebooks i.e groups of codebook | |
mask_prob: probs of mask | |
mask_length: spans of masks | |
min_maks: min masks for each audio | |
num_negatives: numbers of negatives of each masks | |
features_regularization_weight: l2 regularization weight | |
max_gumbel_temperature: maximum temperature for gumbel softmax | |
min_gumbel_temperature: minimum temperature for gumbel softmax | |
gumbel_temperature_decay: | |
decay of gumbel temperature during training | |
contrastive_logits_temperature: | |
the temperature in the contrastive loss. | |
""" | |
super().__init__() | |
assert mask_prob > 0.0 | |
self.mask_prob = mask_prob | |
self.mask_length = mask_length | |
self.min_masks = min_masks | |
self.num_negatives = num_negatives | |
self.features_regularization_weight = features_regularization_weight | |
self.diversity_weight = diversity_weight | |
# encoder | |
self.encoder = encoder | |
# quantizer | |
self.quantizer = Wav2vecGumbelVectorQuantizer( | |
self.encoder.output_size(), | |
num_codebooks=num_codebooks, | |
num_embeddings=num_embeddings, | |
embedding_dim=embedding_dim, | |
hard=False, | |
) | |
self.max_gumbel_temp = max_gumbel_temperature | |
self.min_gumbel_temp = min_gumbel_temperature | |
self.gumbel_temp_decay = gumbel_temperature_decay | |
self.num_codevectors_per_group = num_embeddings | |
self.num_codevector_groups = num_codebooks | |
self.contrastive_logits_temp = contrastive_logits_temperature | |
self.mask_emb = torch.nn.parameter.Parameter( | |
torch.empty(self.encoder.output_size()).uniform_(), | |
requires_grad=True, | |
) | |
# TODO(Mddct): support causal or lookahead mask or keep consistent with | |
# wenet dynamic chunk training | |
# reset parameter | |
self.reset_encoder_parameter() | |
def reset_encoder_parameter(self): | |
def _reset_parameter(module: torch.nn.Module): | |
if isinstance(module, torch.nn.Linear): | |
torch.nn.init.trunc_normal_(module.weight.data, | |
mean=0.0, | |
std=0.02) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, torch.nn.Conv1d): | |
torch.nn.init.kaiming_normal_(module.weight) | |
if module.bias is not None: | |
k = math.sqrt(module.groups / | |
(module.in_channels * module.kernel_size[0])) | |
torch.nn.init.uniform_(module.bias, a=-k, b=k) | |
elif isinstance(module, torch.Tensor): | |
torch.nn.init.trunc_normal_(module) | |
else: | |
raise NotImplementedError("other module not support now") | |
encoders = self.encoder.encoders | |
for _, layer in enumerate(encoders): | |
self_attn = layer.self_attn | |
_reset_parameter(self_attn.linear_q) | |
_reset_parameter(self_attn.linear_k) | |
_reset_parameter(self_attn.linear_v) | |
_reset_parameter(self_attn.linear_out) | |
if isinstance(self_attn, RelPositionMultiHeadedAttention): | |
_reset_parameter(self_attn.pos_bias_u) | |
_reset_parameter(self_attn.pos_bias_v) | |
if isinstance(layer, ConformerEncoderLayer): | |
conv1, conv2 = (layer.conv_module.pointwise_conv1, | |
layer.conv_module.depthwise_conv) | |
_reset_parameter(conv1) | |
_reset_parameter(conv2) | |
def forward( | |
self, | |
batch: Dict, | |
device: torch.device, | |
): | |
steps = batch.get('steps', None) | |
xs = batch['feats'].to(device) | |
xs_lens = batch['feats_lengths'].to(device) | |
assert xs.size(0) == xs_lens.size(0) | |
assert steps is not None | |
# 1 forward subsampling | |
# NOTE(Mddct): use subsampling as feature extraction | |
xs, pos_emb, masks = self._forward_subsampling(xs, xs_lens) | |
unmasked_xs = xs | |
# 2 mask features | |
masked_xs, masked_masks = self._apply_mask(xs, masks.squeeze(1)) | |
# 3 forward encoder blocks | |
out, _ = self._forward_encoder_blocks(masked_xs, masks, pos_emb, masks) | |
gumbel_temperature = max( | |
self.max_gumbel_temp * self.gumbel_temp_decay**steps, | |
self.min_gumbel_temp) | |
quantized_features, codevector_perplexity, _ = self.quantizer( | |
unmasked_xs, masks.squeeze(1), gumbel_temperature) | |
sampled_negative_indices = _sample_negative_indices( | |
xs.size()[:-1], self.num_negatives, masked_masks.device, | |
masked_masks) | |
loss_contrastive = _compute_contrastive_loss( | |
quantized_features, out, sampled_negative_indices, masked_masks, | |
self.contrastive_logits_temp, self.num_negatives) | |
loss = loss_contrastive | |
# scale by sample size | |
# make sure that diversity loss is multiplied by `sample_size` | |
# since contrastive_loss is `sum`-reduced instead of averaged | |
sample_size = masked_masks.sum() | |
# higher codevector_perplexity leads to lower diversity loss | |
loss_diversity: Optional[torch.Tensor] = None | |
if self.diversity_weight != 0.0: | |
loss_diversity = ( | |
self.num_codevector_groups * self.num_codevectors_per_group - | |
codevector_perplexity) / (self.num_codevectors_per_group * | |
self.num_codevector_groups) | |
loss_diversity = loss_diversity * sample_size | |
loss = loss + self.diversity_weight * loss_diversity | |
loss = loss / sample_size | |
features_pen: Optional[torch.Tensor] = None | |
if self.features_regularization_weight != 0.0: | |
features_pen = xs.pow(2).mean() | |
loss = loss + self.features_regularization_weight * features_pen | |
return { | |
"code_ppl": codevector_perplexity.detach(), | |
"features_l2": features_pen, | |
"loss": loss, | |
"loss_contrastive": loss_contrastive / sample_size, | |
"loss_diversity": loss_diversity, | |
} | |
def _apply_mask( | |
self, xs: torch.Tensor, | |
xs_masks: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
masks = compute_mask_indices_v2(xs.size()[:-1], | |
~xs_masks, | |
self.mask_prob, | |
self.mask_length, | |
min_masks=self.min_masks, | |
device=xs.device) | |
masks_expand = masks.unsqueeze(-1) # [B, T, 1] | |
mask_emb = self.mask_emb.to(xs.device).view(1, 1, -1) | |
xs = torch.where(masks_expand, mask_emb, xs) | |
return xs, masks | |
def _forward_subsampling( | |
self, xs: torch.Tensor, xs_lens: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
masks = make_non_pad_mask(xs_lens).unsqueeze(1) # (B, 1, T) | |
if self.encoder.global_cmvn is not None: | |
xs = self.encoder.global_cmvn(xs) | |
xs, pos_emb, masks = self.encoder.embed(xs, masks) | |
return xs, pos_emb, masks | |
def _forward_encoder_blocks(self, xs: torch.Tensor, xs_masks: torch.Tensor, | |
pos_emb: torch.Tensor, mask_pad: torch.Tensor): | |
masks = xs_masks | |
for layer in self.encoder.encoders: | |
xs, masks, _, _ = layer(xs, xs_masks, pos_emb, mask_pad) | |
if self.encoder.normalize_before: | |
xs = self.encoder.after_norm(xs) | |
# Here we assume the mask is not changed in encoder layers, so just | |
# return the masks before encoder layers, and the masks will be used | |
# for cross attention with decoder later | |
return xs, masks | |