Spaces:
Running
on
Zero
Running
on
Zero
test infer
Browse files
app.py
CHANGED
@@ -53,11 +53,12 @@ TASK_PROMPT_MAPPING = {
|
|
53 |
"STTC (Speech to Text Chat)": "首先将语音转录为文字,然后对语音内容进行回复,转录和文字之间使用<开始回答>分割。"
|
54 |
}
|
55 |
|
|
|
56 |
def init_model_my():
|
57 |
logging.basicConfig(level=logging.DEBUG,
|
58 |
format='%(asctime)s %(levelname)s %(message)s')
|
59 |
-
config_path = "
|
60 |
-
checkpoint_path = "
|
61 |
args = SimpleNamespace(**{
|
62 |
"checkpoint": checkpoint_path,
|
63 |
})
|
@@ -68,7 +69,7 @@ def init_model_my():
|
|
68 |
print(model)
|
69 |
return model, tokenizer
|
70 |
|
71 |
-
|
72 |
print("model init success")
|
73 |
def do_resample(input_wav_path, output_wav_path):
|
74 |
""""""
|
@@ -120,13 +121,13 @@ def true_decode_fuc(input_wav_path, input_prompt):
|
|
120 |
model = None
|
121 |
res_text = model.generate(wavs=feat, wavs_len=feat_lens, prompt=input_prompt)[0]
|
122 |
print("耿雪龙哈哈:", res_text)
|
123 |
-
return res_text
|
124 |
@spaces.GPU
|
125 |
def do_decode(input_wav_path, input_prompt):
|
126 |
print(f'input_wav_path= {input_wav_path}, input_prompt= {input_prompt}')
|
127 |
# 省略处理逻辑
|
128 |
-
|
129 |
-
output_res = f"耿雪龙哈哈:测试结果, input_wav_path= {input_wav_path}, input_prompt= {input_prompt}"
|
130 |
return output_res
|
131 |
|
132 |
def save_to_jsonl(if_correct, wav, prompt, res):
|
|
|
53 |
"STTC (Speech to Text Chat)": "首先将语音转录为文字,然后对语音内容进行回复,转录和文字之间使用<开始回答>分割。"
|
54 |
}
|
55 |
|
56 |
+
@spaces.GPU
|
57 |
def init_model_my():
|
58 |
logging.basicConfig(level=logging.DEBUG,
|
59 |
format='%(asctime)s %(levelname)s %(message)s')
|
60 |
+
config_path = "train.yaml"
|
61 |
+
checkpoint_path = "step_32499.pt"
|
62 |
args = SimpleNamespace(**{
|
63 |
"checkpoint": checkpoint_path,
|
64 |
})
|
|
|
69 |
print(model)
|
70 |
return model, tokenizer
|
71 |
|
72 |
+
model, tokenizer = init_model_my()
|
73 |
print("model init success")
|
74 |
def do_resample(input_wav_path, output_wav_path):
|
75 |
""""""
|
|
|
121 |
model = None
|
122 |
res_text = model.generate(wavs=feat, wavs_len=feat_lens, prompt=input_prompt)[0]
|
123 |
print("耿雪龙哈哈:", res_text)
|
124 |
+
return res_text
|
125 |
@spaces.GPU
|
126 |
def do_decode(input_wav_path, input_prompt):
|
127 |
print(f'input_wav_path= {input_wav_path}, input_prompt= {input_prompt}')
|
128 |
# 省略处理逻辑
|
129 |
+
output_res= true_decode_fuc(input_wav_path, input_prompt)
|
130 |
+
# output_res = f"耿雪龙哈哈:测试结果, input_wav_path= {input_wav_path}, input_prompt= {input_prompt}"
|
131 |
return output_res
|
132 |
|
133 |
def save_to_jsonl(if_correct, wav, prompt, res):
|