# Copyright (c) 2021 Mobvoi Inc. (authors: Di Wu) # 2022 Tinnove Inc (authors: Wei Ren) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import copy import logging import os import sys import torch import yaml from torch.utils.data import DataLoader from textgrid import TextGrid, IntervalTier import math from wenet.dataset.dataset import Dataset from wenet.utils.ctc_utils import force_align from wenet.utils.common import get_subsample from wenet.utils.init_model import init_model from wenet.utils.init_tokenizer import init_tokenizer def generator_textgrid(maxtime, lines, output): # Download Praat: https://www.fon.hum.uva.nl/praat/ interval = maxtime / (len(lines) + 1) margin = 0.0001 tg = TextGrid(maxTime=maxtime) linetier = IntervalTier(name="line", maxTime=maxtime) i = 0 for l in lines: s, e, w = l.split() linetier.add(minTime=float(s) + margin, maxTime=float(e), mark=w) tg.append(linetier) print("successfully generator {}".format(output)) tg.write(output) def get_frames_timestamp(alignment, prob, blank_thres=0.999, thres=0.0000000001): # convert alignment to a praat format, which is a doing phonetics # by computer and helps analyzing alignment timestamp = [] # get frames level duration for each token start = 0 end = 0 local_start = 0 while end < len(alignment): while end < len(alignment) and alignment[end] == 0: end += 1 if end == len(alignment): timestamp[-1] += alignment[start:] break end += 1 while end < len(alignment) and alignment[end - 1] == alignment[end]: end += 1 local_start = end - 1 # find the possible front border for current token while local_start >= start and ( prob[local_start][0] < math.log(blank_thres) or prob[local_start][alignment[end - 1]] > math.log(thres)): alignment[local_start] = alignment[end - 1] local_start -= 1 cur_alignment = alignment[start:end] timestamp.append(cur_alignment) start = end return timestamp def get_labformat(timestamp, subsample): begin = 0 begin_time = 0 duration = 0 labformat = [] for idx, t in enumerate(timestamp): # 25ms frame_length,10ms hop_length, 1/subsample subsample = get_subsample(configs) # time duration i = 0 while t[i] == 0: i += 1 begin = i dur = 0 while i < len(t) and t[i] != 0: i += 1 dur += 1 begin = begin_time + begin * 0.01 * subsample duration = dur * 0.01 * subsample if idx < len(timestamp) - 1: print("{:.2f} {:.2f} {}".format(begin, begin + duration, char_dict[t[-1]])) labformat.append("{:.2f} {:.2f} {}\n".format( begin, begin + duration, char_dict[t[-1]])) else: # last token non_blank = 0 for i in t: if i != 0: token = i break print("{:.2f} {:.2f} {}".format(begin, begin + duration, char_dict[token])) labformat.append("{:.2f} {:.2f} {}\n".format( begin, begin + duration, char_dict[token])) begin_time += len(t) * 0.01 * subsample return labformat if __name__ == '__main__': parser = argparse.ArgumentParser( description='use ctc to generate alignment') parser.add_argument('--config', required=True, help='config file') parser.add_argument('--input_file', required=True, help='format data file') parser.add_argument('--data_type', default='raw', choices=['raw', 'shard'], help='train and cv data type') parser.add_argument('--gpu', type=int, default=-1, help='gpu id for this rank, -1 for cpu') parser.add_argument('--device', type=str, default="cpu", choices=["cpu", "npu", "cuda"], help='accelerator to use') parser.add_argument('--blank_thres', default=0.999999, type=float, help='ctc blank thes') parser.add_argument('--thres', default=0.000001, type=float, help='ctc non blank thes') parser.add_argument('--checkpoint', required=True, help='checkpoint model') parser.add_argument('--dict', required=True, help='dict file') parser.add_argument( '--non_lang_syms', help="non-linguistic symbol file. One symbol per line.") parser.add_argument('--result_file', required=True, help='alignment result file') parser.add_argument('--batch_size', type=int, default=1, help='batch size') parser.add_argument('--gen_praat', action='store_true', help='convert alignment to a praat format') parser.add_argument('--bpe_model', default=None, type=str, help='bpe model for english part') args = parser.parse_args() print(args) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') if args.gpu != -1: # remain the original usage of gpu args.device = "cuda" if "cuda" in args.device: os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) if args.batch_size > 1: logging.fatal('alignment mode must be running with batch_size == 1') sys.exit(1) with open(args.config, 'r') as fin: configs = yaml.load(fin, Loader=yaml.FullLoader) # Load dict char_dict = {} with open(args.dict, 'r') as fin: for line in fin: arr = line.strip().split() assert len(arr) == 2 char_dict[int(arr[1])] = arr[0] eos = len(char_dict) - 1 # Init dataset and data loader ali_conf = copy.deepcopy(configs['dataset_conf']) ali_conf['filter_conf']['max_length'] = 102400 ali_conf['filter_conf']['min_length'] = 0 ali_conf['filter_conf']['token_max_length'] = 102400 ali_conf['filter_conf']['token_min_length'] = 0 ali_conf['filter_conf']['max_output_input_ratio'] = 102400 ali_conf['filter_conf']['min_output_input_ratio'] = 0 ali_conf['speed_perturb'] = False ali_conf['spec_aug'] = False ali_conf['spec_trim'] = False ali_conf['shuffle'] = False ali_conf['sort'] = False ali_conf['fbank_conf']['dither'] = 0.0 ali_conf['batch_conf']['batch_type'] = "static" ali_conf['batch_conf']['batch_size'] = args.batch_size tokenizer = init_tokenizer(configs) ali_dataset = Dataset(args.data_type, args.input_file, tokenizer, ali_conf, partition=False) ali_data_loader = DataLoader(ali_dataset, batch_size=None, num_workers=0) # Init asr model from configs model, configs = init_model(args, configs) device = torch.device(args.device) model = model.to(device) model.eval() with torch.no_grad(), open(args.result_file, 'w', encoding='utf-8') as fout: for batch_idx, batch in enumerate(ali_data_loader): print("#" * 80) key, feat, target, feats_length, target_length = batch feat = feat.to(device) target = target.to(device) feats_length = feats_length.to(device) target_length = target_length.to(device) # Let's assume B = batch_size and N = beam_size # 1. Encoder encoder_out, encoder_mask = model._forward_encoder( feat, feats_length) # (B, maxlen, encoder_dim) maxlen = encoder_out.size(1) ctc_probs = model.ctc.log_softmax( encoder_out) # (1, maxlen, vocab_size) # print(ctc_probs.size(1)) ctc_probs = ctc_probs.squeeze(0) target = target.squeeze(0) alignment = force_align(ctc_probs, target) fout.write('{} {}\n'.format(key[0], alignment)) if args.gen_praat: timestamp = get_frames_timestamp(alignment, ctc_probs, args.blank_thres, args.thres) subsample = get_subsample(configs) labformat = get_labformat(timestamp, subsample) lab_path = os.path.join(os.path.dirname(args.result_file), key[0] + ".lab") with open(lab_path, 'w', encoding='utf-8') as f: f.writelines(labformat) textgrid_path = os.path.join(os.path.dirname(args.result_file), key[0] + ".TextGrid") generator_textgrid(maxtime=(len(alignment) + 1) * 0.01 * subsample, lines=labformat, output=textgrid_path)