# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import math import numpy as np def _load_json_cmvn(json_cmvn_file): """ Load the json format cmvn stats file and calculate cmvn Args: json_cmvn_file: cmvn stats file in json format Returns: a numpy array of [means, vars] """ with open(json_cmvn_file) as f: cmvn_stats = json.load(f) means = cmvn_stats['mean_stat'] variance = cmvn_stats['var_stat'] count = cmvn_stats['frame_num'] for i in range(len(means)): means[i] /= count variance[i] = variance[i] / count - means[i] * means[i] if variance[i] < 1.0e-20: variance[i] = 1.0e-20 variance[i] = 1.0 / math.sqrt(variance[i]) cmvn = np.array([means, variance]) return cmvn def _load_kaldi_cmvn(kaldi_cmvn_file): """ Load the kaldi format cmvn stats file and calculate cmvn Args: kaldi_cmvn_file: kaldi text style global cmvn file, which is generated by: compute-cmvn-stats --binary=false scp:feats.scp global_cmvn Returns: a numpy array of [means, vars] """ means = [] variance = [] with open(kaldi_cmvn_file, 'r') as fid: # kaldi binary file start with '\0B' if fid.read(2) == '\0B': logging.error('kaldi cmvn binary file is not supported, please ' 'recompute it by: compute-cmvn-stats --binary=false ' ' scp:feats.scp global_cmvn') sys.exit(1) fid.seek(0) arr = fid.read().split() assert (arr[0] == '[') assert (arr[-2] == '0') assert (arr[-1] == ']') feat_dim = int((len(arr) - 2 - 2) / 2) for i in range(1, feat_dim + 1): means.append(float(arr[i])) count = float(arr[feat_dim + 1]) for i in range(feat_dim + 2, 2 * feat_dim + 2): variance.append(float(arr[i])) for i in range(len(means)): means[i] /= count variance[i] = variance[i] / count - means[i] * means[i] if variance[i] < 1.0e-20: variance[i] = 1.0e-20 variance[i] = 1.0 / math.sqrt(variance[i]) cmvn = np.array([means, variance]) return cmvn def load_cmvn(cmvn_file, is_json): if is_json: cmvn = _load_json_cmvn(cmvn_file) else: cmvn = _load_kaldi_cmvn(cmvn_file) return cmvn[0], cmvn[1]