# Copyright (c) 2019 Shigeki Karita # 2020 Mobvoi Inc (Binbin Zhang) # 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn) # 2022 58.com(Wuba) Inc AI Lab. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multi-Head Attention layer definition.""" import math from typing import Tuple, Optional import torch from torch import nn import torch.nn.functional as F from wenet.transformer.attention import MultiHeadedAttention class GroupedRelPositionMultiHeadedAttention(MultiHeadedAttention): """Multi-Head Attention layer with relative position encoding. Paper: https://arxiv.org/abs/1901.02860 https://arxiv.org/abs/2109.01163 Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head, n_feat, dropout_rate, group_size=3): """Construct an RelPositionMultiHeadedAttention object.""" super().__init__(n_head, n_feat, dropout_rate) # linear transformation for positional encoding self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) self.group_size = group_size self.d_k = n_feat // n_head # for GroupedAttention self.n_feat = n_feat # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter( torch.Tensor(self.h, self.d_k * self.group_size)) self.pos_bias_v = nn.Parameter( torch.Tensor(self.h, self.d_k * self.group_size)) torch.nn.init.xavier_uniform_(self.pos_bias_u) torch.nn.init.xavier_uniform_(self.pos_bias_v) def rel_shift(self, x, zero_triu: bool = False): """Compute relative positinal encoding. Args: x (torch.Tensor): Input tensor (batch, time, size). zero_triu (bool): If true, return the lower triangular part of the matrix. Returns: torch.Tensor: Output tensor. """ zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=-1) x_padded = x_padded.view(x.size()[0], x.size()[1], x.size(3) + 1, x.size(2)) x = x_padded[:, :, 1:].view_as(x) if zero_triu: ones = torch.ones((x.size(2), x.size(3))) x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :] return x def pad4group(self, Q, K, V, P, mask, group_size: int = 3): """ q: (#batch, time1, size) -> (#batch, head, time1, size/head) k,v: (#batch, time2, size) -> (#batch, head, time2, size/head) p: (#batch, time2, size) """ # Compute Overflows overflow_Q = Q.size(2) % group_size overflow_KV = K.size(2) % group_size # if-else for ONNX export # 0 // 0.00000000000000001 = 0 # 1 // 1.00000000000000001 = 1 padding_Q = (group_size - overflow_Q) * int( overflow_Q // (overflow_Q + 0.00000000000000001)) padding_KV = (group_size - overflow_KV) * int( overflow_KV // (overflow_KV + 0.00000000000000001)) batch_size, _, seq_len_KV, _ = K.size() # Input Padding (B, T, D) -> (B, T + P, D) Q = F.pad(Q, (0, 0, 0, padding_Q), value=0.0) K = F.pad(K, (0, 0, 0, padding_KV), value=0.0) V = F.pad(V, (0, 0, 0, padding_KV), value=0.0) if mask is not None and mask.size(2) > 0: # time2 > 0: mask = mask[:, ::group_size, ::group_size] Q = Q.transpose(1, 2).contiguous().view( batch_size, -1, self.h, self.d_k * group_size).transpose(1, 2) K = K.transpose(1, 2).contiguous().view( batch_size, -1, self.h, self.d_k * group_size).transpose(1, 2) V = V.transpose(1, 2).contiguous().view( batch_size, -1, self.h, self.d_k * group_size).transpose(1, 2) # process pos_emb P_batch_size = P.size(0) overflow_P = P.size(1) % group_size padding_P = group_size - overflow_P if overflow_P else 0 P = F.pad(P, (0, 0, 0, padding_P), value=0.0) P = P.view(P_batch_size, -1, self.h, self.d_k * group_size).transpose(1, 2) return Q, K, V, P, mask, padding_Q def forward_attention(self, value: torch.Tensor, scores: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), padding_q: Optional[int] = None) -> torch.Tensor: """Compute attention context vector. Args: value (torch.Tensor): Transformed value, size (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score, size (#batch, n_head, time1, time2). mask (torch.Tensor): Mask, size (#batch, 1, time2) or (#batch, time1, time2), (0, 0, 0) means fake mask. padding_q : for GroupedAttention in efficent conformer Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) # NOTE(xcsong): When will `if mask.size(2) > 0` be True? # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the # 1st chunk to ease the onnx export.] # 2. pytorch training if mask.size(2) > 0: # time2 > 0 mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) # For last chunk, time2 might be larger than scores.size(-1) mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2) scores = scores.masked_fill(mask, -float('inf')) attn = torch.softmax(scores, dim=-1).masked_fill( mask, 0.0) # (batch, head, time1, time2) # NOTE(xcsong): When will `if mask.size(2) > 0` be False? # 1. onnx(16/-1, -1/-1, 16/0) # 2. jit (16/-1, -1/-1, 16/0, 16/4) else: attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) # n_feat!=h*d_k may be happened in GroupAttention x = (x.transpose(1, 2).contiguous().view(n_batch, -1, self.n_feat) ) # (batch, time1, d_model) if padding_q is not None: # for GroupedAttention in efficent conformer x = x[:, :x.size(1) - padding_q] return self.linear_out(x) # (batch, time1, d_model) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), pos_emb: torch.Tensor = torch.empty(0), cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). pos_emb (torch.Tensor): Positional embedding tensor (#batch, time2, size). cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` Returns: torch.Tensor: Output tensor (#batch, time1, d_model). torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` """ q = self.linear_q(query) k = self.linear_k(key) # (#batch, time2, size) v = self.linear_v(value) p = self.linear_pos(pos_emb) # (#batch, time2, size) batch_size, seq_len_KV, _ = k.size() # seq_len_KV = time2 # (#batch, time2, size) -> (#batch, head, time2, size/head) q = q.view(batch_size, -1, self.h, self.d_k).transpose(1, 2) k = k.view(batch_size, -1, self.h, self.d_k).transpose(1, 2) v = v.view(batch_size, -1, self.h, self.d_k).transpose(1, 2) if cache.size(0) > 0: # use attention cache key_cache, value_cache = torch.split(cache, cache.size(-1) // 2, dim=-1) k = torch.cat([key_cache, k], dim=2) v = torch.cat([value_cache, v], dim=2) new_cache = torch.cat((k, v), dim=-1) # May be k and p does not match. eg. time2=18+18/2=27 > mask=36/2=18 if mask is not None and mask.size(2) > 0: time2 = mask.size(2) k = k[:, :, -time2:, :] v = v[:, :, -time2:, :] # q k v p: (batch, head, time1, d_k) q, k, v, p, mask, padding_q = self.pad4group(q, k, v, p, mask, self.group_size) # q_with_bias_u & q_with_bias_v = (batch, head, time1, d_k) q = q.transpose(1, 2) # (batch, time1, head, d_k) q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch, head, time1, time2) matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # compute matrix b and matrix d # (batch, head, time1, time2) matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) # Remove rel_shift since it is useless in speech recognition, # and it requires special attention for streaming. # matrix_bd = self.rel_shift(matrix_bd) scores = (matrix_ac + matrix_bd) / math.sqrt( self.d_k * self.group_size) # (batch, head, time1, time2) return self.forward_attention(v, scores, mask, padding_q), new_cache