# Copyright (c) 2019 Shigeki Karita # 2020 Mobvoi Inc (Binbin Zhang) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Positionwise feed forward layer definition.""" import torch class PositionwiseFeedForward(torch.nn.Module): """Positionwise feed forward layer. FeedForward are appied on each position of the sequence. The output dim is same with the input dim. Args: idim (int): Input dimenstion. hidden_units (int): The number of hidden units. dropout_rate (float): Dropout rate. activation (torch.nn.Module): Activation function """ def __init__( self, idim: int, hidden_units: int, dropout_rate: float, activation: torch.nn.Module = torch.nn.ReLU(), bias: bool = True, *dummy_args, **dummy_kwargs, ): """Construct a PositionwiseFeedForward object.""" super(PositionwiseFeedForward, self).__init__() self.w_1 = torch.nn.Linear(idim, hidden_units, bias=bias) self.activation = activation self.dropout = torch.nn.Dropout(dropout_rate) self.w_2 = torch.nn.Linear(hidden_units, idim, bias=bias) def forward(self, xs: torch.Tensor) -> torch.Tensor: """Forward function. Args: xs: input tensor (B, L, D) Returns: output tensor, (B, L, D) """ return self.w_2(self.dropout(self.activation(self.w_1(xs)))) class MoEFFNLayer(torch.nn.Module): """ Mixture of expert with Positionwise feed forward layer See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf The output dim is same with the input dim. Modified from https://github.com/Lightning-AI/lit-gpt/pull/823 https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219 Args: n_expert: number of expert. n_expert_activated: The actual number of experts used for each frame idim (int): Input dimenstion. hidden_units (int): The number of hidden units. dropout_rate (float): Dropout rate. activation (torch.nn.Module): Activation function """ def __init__( self, idim: int, hidden_units: int, dropout_rate: float, activation: torch.nn.Module = torch.nn.ReLU(), bias: bool = False, n_expert: int = 8, n_expert_activated: int = 2, ): super(MoEFFNLayer, self).__init__() self.gate = torch.nn.Linear(idim, n_expert, bias=False) self.experts = torch.nn.ModuleList( PositionwiseFeedForward( idim, hidden_units, dropout_rate, activation, bias=bias) for _ in range(n_expert)) self.n_expert = n_expert self.n_expert_activated = n_expert_activated def forward(self, xs: torch.Tensor) -> torch.Tensor: """Foward function. Args: xs: input tensor (B, L, D) Returns: output tensor, (B, L, D) """ B, L, D = xs.size( ) # batch size, sequence length, embedding dimension (idim) xs = xs.view(-1, D) # (B*L, D) router = self.gate(xs) # (B*L, n_expert) logits, selected_experts = torch.topk( router, self.n_expert_activated ) # probs:(B*L, n_expert_activated), selected_exp: (B*L, n_expert_activated) weights = torch.nn.functional.softmax( logits, dim=1, dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_activated) output = torch.zeros_like(xs) # (B*L, D) for i, expert in enumerate(self.experts): mask = selected_experts == i token_ids, ith_expert = torch.where(mask) output[token_ids] += weights[token_ids, ith_expert, None] * expert( xs[token_ids]) return output.view(B, L, D) class GatedVariantsMLP(torch.nn.Module): """ https://arxiv.org/pdf/2002.05202.pdf """ def __init__( self, idim: int, hidden_units: int, dropout_rate: float, activation: torch.nn.Module = torch.nn.GELU(), bias: bool = True, *dummy_args, **dummy_kwargs, ): """Construct a PositionwiseFeedForward object.""" super(GatedVariantsMLP, self).__init__() self.gate = torch.nn.Linear(idim, hidden_units, bias=False) self.activation = activation # w_1 as up proj self.w_1 = torch.nn.Linear(idim, hidden_units, bias=bias) self.dropout = torch.nn.Dropout(dropout_rate) # w_2 as down proj self.w_2 = torch.nn.Linear(hidden_units, idim, bias=bias) def forward(self, x) -> torch.Tensor: """Foward function. Args: xs: input tensor (B, L, D) Returns: output tensor, (B, L, D) """ gate = self.activation(self.gate(x)) up = self.w_1(x) fuse = gate * up return self.w_2(self.dropout(fuse))