# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University) # 2023 Voicecomm Inc (Kai Li) # 2023 Lucky Wong # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from ESPnet(https://github.com/espnet/espnet) """Encoder definition.""" import torch from typing import List, Optional, Union from wenet.branchformer.encoder import LayerDropModuleList from wenet.e_branchformer.encoder_layer import EBranchformerEncoderLayer from wenet.branchformer.cgmlp import ConvolutionalGatingMLP from wenet.transformer.encoder import ConformerEncoder from wenet.utils.class_utils import ( WENET_ACTIVATION_CLASSES, WENET_ATTENTION_CLASSES, WENET_MLP_CLASSES, ) class EBranchformerEncoder(ConformerEncoder): """E-Branchformer encoder module.""" def __init__( self, input_size: int, output_size: int = 256, attention_heads: int = 4, linear_units: int = 2048, selfattention_layer_type: str = "rel_selfattn", pos_enc_layer_type: str = "rel_pos", activation_type: str = "swish", cgmlp_linear_units: int = 2048, cgmlp_conv_kernel: int = 31, use_linear_after_conv: bool = False, gate_activation: str = "identity", num_blocks: int = 12, dropout_rate: float = 0.1, positional_dropout_rate: float = 0.1, attention_dropout_rate: float = 0.0, input_layer: str = "conv2d", stochastic_depth_rate: Union[float, List[float]] = 0.0, static_chunk_size: int = 0, use_dynamic_chunk: bool = False, global_cmvn: torch.nn.Module = None, use_dynamic_left_chunk: bool = False, causal: bool = False, merge_conv_kernel: int = 3, use_ffn: bool = True, macaron_style: bool = True, query_bias: bool = True, key_bias: bool = True, value_bias: bool = True, conv_bias: bool = True, gradient_checkpointing: bool = False, use_sdpa: bool = False, layer_norm_type: str = 'layer_norm', norm_eps: float = 1e-5, n_kv_head: Optional[int] = None, head_dim: Optional[int] = None, mlp_type: str = 'position_wise_feed_forward', mlp_bias: bool = True, n_expert: int = 8, n_expert_activated: int = 2, ): super().__init__(input_size, output_size, attention_heads, linear_units, num_blocks, dropout_rate, positional_dropout_rate, attention_dropout_rate, input_layer, pos_enc_layer_type, True, static_chunk_size, use_dynamic_chunk, global_cmvn, use_dynamic_left_chunk, 1, macaron_style, selfattention_layer_type, activation_type, query_bias=query_bias, key_bias=key_bias, value_bias=value_bias, conv_bias=conv_bias, gradient_checkpointing=gradient_checkpointing, use_sdpa=use_sdpa, layer_norm_type=layer_norm_type, norm_eps=norm_eps, n_kv_head=n_kv_head, head_dim=head_dim, mlp_type=mlp_type, mlp_bias=mlp_bias, n_expert=n_expert, n_expert_activated=n_expert_activated) encoder_selfattn_layer_args = ( attention_heads, output_size, attention_dropout_rate, query_bias, key_bias, value_bias, use_sdpa, n_kv_head, head_dim, ) cgmlp_layer = ConvolutionalGatingMLP cgmlp_layer_args = (output_size, cgmlp_linear_units, cgmlp_conv_kernel, dropout_rate, use_linear_after_conv, gate_activation, causal) # feed-forward module definition mlp_class = WENET_MLP_CLASSES[mlp_type] activation = WENET_ACTIVATION_CLASSES[activation_type]() positionwise_layer_args = ( output_size, linear_units, dropout_rate, activation, mlp_bias, n_expert, n_expert_activated, ) if isinstance(stochastic_depth_rate, float): stochastic_depth_rate = [stochastic_depth_rate] * num_blocks if len(stochastic_depth_rate) != num_blocks: raise ValueError( f"Length of stochastic_depth_rate ({len(stochastic_depth_rate)}) " f"should be equal to num_blocks ({num_blocks})") self.encoders = LayerDropModuleList( p=stochastic_depth_rate, modules=[ EBranchformerEncoderLayer( output_size, WENET_ATTENTION_CLASSES[selfattention_layer_type]( *encoder_selfattn_layer_args), cgmlp_layer(*cgmlp_layer_args), mlp_class(*positionwise_layer_args) if use_ffn else None, mlp_class(*positionwise_layer_args) if use_ffn and macaron_style else None, dropout_rate, merge_conv_kernel=merge_conv_kernel, causal=causal, stochastic_depth_rate=stochastic_depth_rate[lnum], ) for lnum in range(num_blocks) ])