# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University) # 2023 Voicecomm Inc (Kai Li) # 2023 Lucky Wong # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from ESPnet(https://github.com/espnet/espnet) """EBranchformerEncoderLayer definition.""" import torch import torch.nn as nn from typing import Optional, Tuple from wenet.transformer.attention import T_CACHE class EBranchformerEncoderLayer(torch.nn.Module): """E-Branchformer encoder layer module. Args: size (int): model dimension attn: standard self-attention or efficient attention cgmlp: ConvolutionalGatingMLP feed_forward: feed-forward module, optional feed_forward: macaron-style feed-forward module, optional dropout_rate (float): dropout probability merge_conv_kernel (int): kernel size of the depth-wise conv in merge module """ def __init__( self, size: int, attn: torch.nn.Module, cgmlp: torch.nn.Module, feed_forward: Optional[torch.nn.Module], feed_forward_macaron: Optional[torch.nn.Module], dropout_rate: float, merge_conv_kernel: int = 3, causal: bool = True, stochastic_depth_rate=0.0, ): super().__init__() self.size = size self.attn = attn self.cgmlp = cgmlp self.feed_forward = feed_forward self.feed_forward_macaron = feed_forward_macaron self.ff_scale = 1.0 if self.feed_forward is not None: self.norm_ff = nn.LayerNorm(size) if self.feed_forward_macaron is not None: self.ff_scale = 0.5 self.norm_ff_macaron = nn.LayerNorm(size) self.norm_mha = nn.LayerNorm(size) # for the MHA module self.norm_mlp = nn.LayerNorm(size) # for the MLP module # for the final output of the block self.norm_final = nn.LayerNorm(size) self.dropout = torch.nn.Dropout(dropout_rate) if causal: padding = 0 self.lorder = merge_conv_kernel - 1 else: # kernel_size should be an odd number for none causal convolution assert (merge_conv_kernel - 1) % 2 == 0 padding = (merge_conv_kernel - 1) // 2 self.lorder = 0 self.depthwise_conv_fusion = torch.nn.Conv1d( size + size, size + size, kernel_size=merge_conv_kernel, stride=1, padding=padding, groups=size + size, bias=True, ) self.merge_proj = torch.nn.Linear(size + size, size) self.stochastic_depth_rate = stochastic_depth_rate def _forward( self, x: torch.Tensor, mask: torch.Tensor, pos_emb: torch.Tensor, mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), att_cache: T_CACHE = (torch.zeros( (0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)), cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), stoch_layer_coeff: float = 1.0 ) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]: if self.feed_forward_macaron is not None: residual = x x = self.norm_ff_macaron(x) x = residual + stoch_layer_coeff * self.ff_scale * self.dropout( self.feed_forward_macaron(x)) # Two branches x1 = x x2 = x # Branch 1: multi-headed attention module x1 = self.norm_mha(x1) x_att, new_att_cache = self.attn(x1, x1, x1, mask, pos_emb, att_cache) x1 = self.dropout(x_att) # Branch 2: convolutional gating mlp # Fake new cnn cache here, and then change it in conv_module new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) x2 = self.norm_mlp(x2) x2, new_cnn_cache = self.cgmlp(x2, mask_pad, cnn_cache) x2 = self.dropout(x2) # Merge two branches x_concat = torch.cat([x1, x2], dim=-1) x_tmp = x_concat.transpose(1, 2) if self.lorder > 0: x_tmp = nn.functional.pad(x_tmp, (self.lorder, 0), "constant", 0.0) assert x_tmp.size(2) > self.lorder x_tmp = self.depthwise_conv_fusion(x_tmp) x_tmp = x_tmp.transpose(1, 2) x = x + stoch_layer_coeff * self.dropout( self.merge_proj(x_concat + x_tmp)) if self.feed_forward is not None: # feed forward module residual = x x = self.norm_ff(x) x = residual + stoch_layer_coeff * self.ff_scale * self.dropout( self.feed_forward(x)) x = self.norm_final(x) return x, mask, new_att_cache, new_cnn_cache def forward( self, x: torch.Tensor, mask: torch.Tensor, pos_emb: torch.Tensor, mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), att_cache: T_CACHE = (torch.zeros( (0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)), cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), ) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]: """Compute encoded features. Args: x (Union[Tuple, torch.Tensor]): Input tensor (#batch, time, size). mask (torch.Tensor): Mask tensor for the input (#batch, time, time). pos_emb (torch.Tensor): positional encoding, must not be None for BranchformerEncoderLayer. mask_pad (torch.Tensor): batch padding mask used for conv module. (#batch, 1,time), (0, 0, 0) means fake mask. att_cache (torch.Tensor): Cache tensor of the KEY & VALUE (#batch=1, head, cache_t1, d_k * 2), head * d_k == size. cnn_cache (torch.Tensor): Convolution cache in cgmlp layer (#batch=1, size, cache_t2) Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time, time. torch.Tensor: att_cache tensor, (#batch=1, head, cache_t1 + time, d_k * 2). torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). """ stoch_layer_coeff = 1.0 # with stochastic depth, residual connection `x + f(x)` becomes # `x <- x + 1 / (1 - p) * f(x)` at training time. if self.training: stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) return self._forward(x, mask, pos_emb, mask_pad, att_cache, cnn_cache, stoch_layer_coeff)