Spaces:
Sleeping
Sleeping
File size: 1,227 Bytes
83f1462 a001687 e3edf18 a001687 885566b e3edf18 a001687 e3edf18 a001687 17e4e6d 5413714 a001687 83f1462 a001687 51b98f5 a001687 8cbfa15 a001687 83f1462 a001687 e3edf18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
import spaces
import torch
from peft import PeftConfig, PeftModel
from transformers import LlamaForCausalLM, AutoTokenizer, BitsAndBytesConfig
config = PeftConfig.from_pretrained("GGmorello/FLAMES-20k")
model = LlamaForCausalLM.from_pretrained(
'codellama/codellama-7b-hf',
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
),
)
model = PeftModel.from_pretrained(model, "GGmorello/FLAMES-20k")
MAX_SEQ_LEN = 4096
tokenizer = AutoTokenizer.from_pretrained('codellama/codellama-7b-hf')
model.config.pad_token = tokenizer.pad_token = tokenizer.unk_token
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' 🤔
@spaces.GPU
def predict(text):
model.to(zero.device)
input_ids = tokenizer(text, return_tensors='pt')["input_ids"]
input_ids.to(zero.device)
generated_ids = model.generate(input_ids, max_new_tokens=256)
filling = tokenizer.batch_decode(generated_ids[:, input_ids.shape[1]:], skip_special_tokens = True)[0]
return filling
demo = gr.Interface(fn=predict, inputs=gr.Text(), outputs=gr.Text())
demo.launch() |