Spaces:
Runtime error
Runtime error
Commit
·
0d1bfaa
1
Parent(s):
d79400e
Initial integration
Browse files- app.py +61 -1
- rl_agent/test_env.py +4 -18
app.py
CHANGED
@@ -3,14 +3,74 @@ import pandas as pd
|
|
3 |
import plotly.graph_objects as go
|
4 |
from plotly.subplots import make_subplots
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
import datetime
|
8 |
def get_time():
|
9 |
return datetime.datetime.now().time()
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
counter = 0
|
13 |
-
start_year, test_year =
|
14 |
datetime_column = "Date"
|
15 |
df_data = pd.read_csv(f"./data/EURUSD_Candlestick_1_M_BID_01.01.{start_year}-04.02.2023_processed.csv")
|
16 |
df_data[datetime_column] = pd.to_datetime(df_data[datetime_column], format="%Y-%m-%d") # %d.%m.%Y %H:%M:%S.000 GMT%z
|
|
|
3 |
import plotly.graph_objects as go
|
4 |
from plotly.subplots import make_subplots
|
5 |
|
6 |
+
from env import Environment
|
7 |
+
from policy import Policy
|
8 |
+
from utils import myOptimizer
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from collections import OrderedDict
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
|
15 |
import datetime
|
16 |
def get_time():
|
17 |
return datetime.datetime.now().time()
|
18 |
|
19 |
|
20 |
+
def init_rl_agent(train, test):
|
21 |
+
date_split = '01.09.2022 00:00:00.000 GMT-0500'
|
22 |
+
|
23 |
+
learning_rate = 0.001
|
24 |
+
first_momentum = 0.0
|
25 |
+
second_momentum = 0.0001
|
26 |
+
transaction_cost = 0.0001
|
27 |
+
adaptation_rate = 0.01
|
28 |
+
state_size = 15
|
29 |
+
equity = 1.0
|
30 |
+
|
31 |
+
agent = Policy(input_channels=state_size)
|
32 |
+
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
|
33 |
+
|
34 |
+
history = []
|
35 |
+
for i in range(1, state_size):
|
36 |
+
c = train.iloc[i, :]['Close'] - train.iloc[i - 1, :]['Close']
|
37 |
+
history.append(c)
|
38 |
+
|
39 |
+
env = Environment(train, history=history, state_size=state_size)
|
40 |
+
observation = env.reset()
|
41 |
+
|
42 |
+
return env, agent, optimizer, state_size, observation, date_split, equity
|
43 |
+
|
44 |
+
|
45 |
+
def make_prediction(env, agent, optimizer, state_size, observation, data, date_split, equity):
|
46 |
+
model_gradients_history = dict()
|
47 |
+
checkpoint = OrderedDict()
|
48 |
+
|
49 |
+
for name, param in agent.named_parameters():
|
50 |
+
model_gradients_history.update({name: torch.zeros_like(param)})
|
51 |
+
|
52 |
+
for i in tqdm(range(state_size, len(data[:date_split]))):
|
53 |
+
observation = torch.as_tensor(observation).float()
|
54 |
+
action = agent(observation)
|
55 |
+
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
56 |
+
|
57 |
+
action.backward()
|
58 |
+
|
59 |
+
for name, param in agent.named_parameters():
|
60 |
+
grad_n = param.grad
|
61 |
+
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
62 |
+
checkpoint[name] = param
|
63 |
+
model_gradients_history.update({name: grad_n})
|
64 |
+
|
65 |
+
if i > 10000:
|
66 |
+
equity += env.profit
|
67 |
+
|
68 |
+
optimizer.after_step(reward)
|
69 |
+
agent.load_state_dict(checkpoint)
|
70 |
+
|
71 |
+
|
72 |
counter = 0
|
73 |
+
start_year, test_year = 2021, 2023
|
74 |
datetime_column = "Date"
|
75 |
df_data = pd.read_csv(f"./data/EURUSD_Candlestick_1_M_BID_01.01.{start_year}-04.02.2023_processed.csv")
|
76 |
df_data[datetime_column] = pd.to_datetime(df_data[datetime_column], format="%Y-%m-%d") # %d.%m.%Y %H:%M:%S.000 GMT%z
|
rl_agent/test_env.py
CHANGED
@@ -12,6 +12,7 @@ import matplotlib.pyplot as plt
|
|
12 |
from tqdm import tqdm
|
13 |
from torch.utils.tensorboard import SummaryWriter
|
14 |
|
|
|
15 |
if __name__ == "__main__":
|
16 |
writer = SummaryWriter('runs/new_data_ex_7')
|
17 |
|
@@ -21,14 +22,13 @@ if __name__ == "__main__":
|
|
21 |
data = data.set_index('Local time')
|
22 |
print(data.index.min(), data.index.max())
|
23 |
|
24 |
-
date_split = '
|
25 |
# date_split = '25.08.2022 04:30:00.000 GMT-0500' # 30 min
|
26 |
# date_split = '03.02.2023 15:30:00.000 GMT-0600' # 30 min
|
27 |
|
28 |
train = data[:date_split]
|
29 |
test = data[date_split:]
|
30 |
|
31 |
-
|
32 |
learning_rate = 0.001
|
33 |
first_momentum = 0.0
|
34 |
second_momentum = 0.0001
|
@@ -40,8 +40,6 @@ if __name__ == "__main__":
|
|
40 |
agent = Policy(input_channels=state_size)
|
41 |
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
history = []
|
46 |
for i in range(1, state_size):
|
47 |
c = train.iloc[i, :]['Close'] - train.iloc[i-1, :]['Close']
|
@@ -49,7 +47,6 @@ if __name__ == "__main__":
|
|
49 |
|
50 |
env = Environment(train, history=history, state_size=state_size)
|
51 |
observation = env.reset()
|
52 |
-
|
53 |
|
54 |
model_gradients_history = dict()
|
55 |
checkpoint = OrderedDict()
|
@@ -57,20 +54,14 @@ if __name__ == "__main__":
|
|
57 |
for name, param in agent.named_parameters():
|
58 |
model_gradients_history.update({name: torch.zeros_like(param)})
|
59 |
|
60 |
-
|
61 |
-
|
62 |
for i in tqdm(range(state_size, len(train))):
|
63 |
observation = torch.as_tensor(observation).float()
|
64 |
action = agent(observation)
|
65 |
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
action.backward()
|
71 |
|
72 |
for name, param in agent.named_parameters():
|
73 |
-
|
74 |
grad_n = param.grad
|
75 |
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
76 |
checkpoint[name] = param
|
@@ -95,7 +86,6 @@ if __name__ == "__main__":
|
|
95 |
|
96 |
# env = Environment(test, history=history, state_size=state_size)
|
97 |
# observation = env.reset()
|
98 |
-
|
99 |
|
100 |
# model_gradients_history = dict()
|
101 |
# checkpoint = OrderedDict()
|
@@ -107,14 +97,9 @@ if __name__ == "__main__":
|
|
107 |
# observation = torch.as_tensor(observation).float()
|
108 |
# action = agent(observation)
|
109 |
# observation, reward, _ = env.step(action.data.numpy())
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
# action.backward()
|
115 |
|
116 |
# for name, param in agent.named_parameters():
|
117 |
-
|
118 |
# grad_n = param.grad
|
119 |
# param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
120 |
# checkpoint[name] = param
|
@@ -123,4 +108,5 @@ if __name__ == "__main__":
|
|
123 |
# optimizer.after_step(reward)
|
124 |
# agent.load_state_dict(checkpoint)
|
125 |
|
126 |
-
print(env.profits)
|
|
|
|
12 |
from tqdm import tqdm
|
13 |
from torch.utils.tensorboard import SummaryWriter
|
14 |
|
15 |
+
|
16 |
if __name__ == "__main__":
|
17 |
writer = SummaryWriter('runs/new_data_ex_7')
|
18 |
|
|
|
22 |
data = data.set_index('Local time')
|
23 |
print(data.index.min(), data.index.max())
|
24 |
|
25 |
+
date_split = '01.09.2022 00:00:00.000 GMT-0500'
|
26 |
# date_split = '25.08.2022 04:30:00.000 GMT-0500' # 30 min
|
27 |
# date_split = '03.02.2023 15:30:00.000 GMT-0600' # 30 min
|
28 |
|
29 |
train = data[:date_split]
|
30 |
test = data[date_split:]
|
31 |
|
|
|
32 |
learning_rate = 0.001
|
33 |
first_momentum = 0.0
|
34 |
second_momentum = 0.0001
|
|
|
40 |
agent = Policy(input_channels=state_size)
|
41 |
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
|
42 |
|
|
|
|
|
43 |
history = []
|
44 |
for i in range(1, state_size):
|
45 |
c = train.iloc[i, :]['Close'] - train.iloc[i-1, :]['Close']
|
|
|
47 |
|
48 |
env = Environment(train, history=history, state_size=state_size)
|
49 |
observation = env.reset()
|
|
|
50 |
|
51 |
model_gradients_history = dict()
|
52 |
checkpoint = OrderedDict()
|
|
|
54 |
for name, param in agent.named_parameters():
|
55 |
model_gradients_history.update({name: torch.zeros_like(param)})
|
56 |
|
|
|
|
|
57 |
for i in tqdm(range(state_size, len(train))):
|
58 |
observation = torch.as_tensor(observation).float()
|
59 |
action = agent(observation)
|
60 |
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
|
|
|
|
|
|
61 |
|
62 |
action.backward()
|
63 |
|
64 |
for name, param in agent.named_parameters():
|
|
|
65 |
grad_n = param.grad
|
66 |
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
67 |
checkpoint[name] = param
|
|
|
86 |
|
87 |
# env = Environment(test, history=history, state_size=state_size)
|
88 |
# observation = env.reset()
|
|
|
89 |
|
90 |
# model_gradients_history = dict()
|
91 |
# checkpoint = OrderedDict()
|
|
|
97 |
# observation = torch.as_tensor(observation).float()
|
98 |
# action = agent(observation)
|
99 |
# observation, reward, _ = env.step(action.data.numpy())
|
|
|
|
|
|
|
|
|
100 |
# action.backward()
|
101 |
|
102 |
# for name, param in agent.named_parameters():
|
|
|
103 |
# grad_n = param.grad
|
104 |
# param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
105 |
# checkpoint[name] = param
|
|
|
108 |
# optimizer.after_step(reward)
|
109 |
# agent.load_state_dict(checkpoint)
|
110 |
|
111 |
+
print(env.profits)
|
112 |
+
|