Spaces:
Runtime error
Runtime error
PZR0033
commited on
Commit
·
2863f52
1
Parent(s):
8e3072c
improved stability
Browse files- rl_agent/policy.py +6 -6
- rl_agent/test_env.py +50 -4
- rl_agent/utils.py +1 -1
rl_agent/policy.py
CHANGED
@@ -8,19 +8,19 @@ class Policy(nn.Module):
|
|
8 |
|
9 |
super(Policy, self).__init__()
|
10 |
|
11 |
-
self.layer1 = nn.Linear(input_channels,
|
12 |
self.tanh1 = nn.Tanh()
|
13 |
-
self.layer2 = nn.Linear(2 * input_channels, 1)
|
14 |
-
self.tanh2 = nn.Tanh()
|
15 |
|
16 |
def forward(self, state):
|
17 |
|
18 |
hidden = self.layer1(state)
|
19 |
hidden = self.tanh1(hidden)
|
20 |
-
hidden = self.layer2(hidden)
|
21 |
-
action = self.tanh2(hidden)
|
22 |
|
23 |
-
return
|
24 |
|
25 |
|
26 |
|
|
|
8 |
|
9 |
super(Policy, self).__init__()
|
10 |
|
11 |
+
self.layer1 = nn.Linear(input_channels, 1)
|
12 |
self.tanh1 = nn.Tanh()
|
13 |
+
# self.layer2 = nn.Linear(2 * input_channels, 1)
|
14 |
+
# self.tanh2 = nn.Tanh()
|
15 |
|
16 |
def forward(self, state):
|
17 |
|
18 |
hidden = self.layer1(state)
|
19 |
hidden = self.tanh1(hidden)
|
20 |
+
# hidden = self.layer2(hidden)
|
21 |
+
# action = self.tanh2(hidden)
|
22 |
|
23 |
+
return hidden
|
24 |
|
25 |
|
26 |
|
rl_agent/test_env.py
CHANGED
@@ -7,6 +7,8 @@ import numpy as np
|
|
7 |
import torch
|
8 |
from collections import OrderedDict
|
9 |
|
|
|
|
|
10 |
if __name__ == "__main__":
|
11 |
|
12 |
data = pd.read_csv('./data/EURUSD_Candlestick_1_M_BID_01.01.2021-04.02.2023.csv')
|
@@ -19,10 +21,10 @@ if __name__ == "__main__":
|
|
19 |
test = data[date_split:]
|
20 |
|
21 |
initial_money = 10.0
|
22 |
-
|
23 |
-
learning_rate = 0.
|
24 |
first_momentum = 0.0
|
25 |
-
second_momentum = 0.
|
26 |
transaction_cost = 0.0001
|
27 |
adaptation_rate = 0.01
|
28 |
state_size = 15
|
@@ -47,7 +49,50 @@ if __name__ == "__main__":
|
|
47 |
for name, param in agent.named_parameters():
|
48 |
model_gradients_history.update({name: torch.zeros_like(param)})
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
observation = torch.as_tensor(observation).float()
|
52 |
action = agent(observation)
|
53 |
observation, reward, _ = env.step(action.data.numpy())
|
@@ -64,6 +109,7 @@ if __name__ == "__main__":
|
|
64 |
checkpoint[name] = param
|
65 |
model_gradients_history.update({name: grad_n})
|
66 |
|
|
|
67 |
agent.load_state_dict(checkpoint)
|
68 |
|
69 |
print(env.profits)
|
|
|
7 |
import torch
|
8 |
from collections import OrderedDict
|
9 |
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
if __name__ == "__main__":
|
13 |
|
14 |
data = pd.read_csv('./data/EURUSD_Candlestick_1_M_BID_01.01.2021-04.02.2023.csv')
|
|
|
21 |
test = data[date_split:]
|
22 |
|
23 |
initial_money = 10.0
|
24 |
+
|
25 |
+
learning_rate = 0.001
|
26 |
first_momentum = 0.0
|
27 |
+
second_momentum = 0.0001
|
28 |
transaction_cost = 0.0001
|
29 |
adaptation_rate = 0.01
|
30 |
state_size = 15
|
|
|
49 |
for name, param in agent.named_parameters():
|
50 |
model_gradients_history.update({name: torch.zeros_like(param)})
|
51 |
|
52 |
+
|
53 |
+
p = []
|
54 |
+
|
55 |
+
|
56 |
+
for _ in range(state_size, 28800):
|
57 |
+
observation = torch.as_tensor(observation).float()
|
58 |
+
action = agent(observation)
|
59 |
+
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
action.backward()
|
65 |
+
|
66 |
+
for name, param in agent.named_parameters():
|
67 |
+
|
68 |
+
grad_n = param.grad
|
69 |
+
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
70 |
+
checkpoint[name] = param
|
71 |
+
model_gradients_history.update({name: grad_n})
|
72 |
+
|
73 |
+
p.append(env.profits)
|
74 |
+
optimizer.after_step(reward)
|
75 |
+
agent.load_state_dict(checkpoint)
|
76 |
+
|
77 |
+
###########
|
78 |
+
###########
|
79 |
+
|
80 |
+
history = []
|
81 |
+
for i in range(1, state_size):
|
82 |
+
c = test.iloc[i, :]['Close'] - test.iloc[i-1, :]['Close']
|
83 |
+
history.append(c)
|
84 |
+
|
85 |
+
env = Environment(test, history=history, state_size=state_size)
|
86 |
+
observation = env.reset()
|
87 |
+
|
88 |
+
|
89 |
+
model_gradients_history = dict()
|
90 |
+
checkpoint = OrderedDict()
|
91 |
+
|
92 |
+
for name, param in agent.named_parameters():
|
93 |
+
model_gradients_history.update({name: torch.zeros_like(param)})
|
94 |
+
|
95 |
+
for _ in range(state_size, 14400):
|
96 |
observation = torch.as_tensor(observation).float()
|
97 |
action = agent(observation)
|
98 |
observation, reward, _ = env.step(action.data.numpy())
|
|
|
109 |
checkpoint[name] = param
|
110 |
model_gradients_history.update({name: grad_n})
|
111 |
|
112 |
+
optimizer.after_step(reward)
|
113 |
agent.load_state_dict(checkpoint)
|
114 |
|
115 |
print(env.profits)
|
rl_agent/utils.py
CHANGED
@@ -15,7 +15,7 @@ class myOptimizer():
|
|
15 |
numerator = self.mu_square - (self.mu * reward)
|
16 |
denominator = np.sqrt((self.mu_square - (self.mu ** 2)) ** 3)
|
17 |
|
18 |
-
gradient = numerator /
|
19 |
|
20 |
current_grad = (-1.0 * self.transaction_cost * grad_n)
|
21 |
|
|
|
15 |
numerator = self.mu_square - (self.mu * reward)
|
16 |
denominator = np.sqrt((self.mu_square - (self.mu ** 2)) ** 3)
|
17 |
|
18 |
+
gradient = numerator / denominator
|
19 |
|
20 |
current_grad = (-1.0 * self.transaction_cost * grad_n)
|
21 |
|