pmthangk09 commited on
Commit
c3e8fb1
·
1 Parent(s): 84ad1cc

Visualize total profits

Browse files
Files changed (2) hide show
  1. app.py +10 -4
  2. rl_agent/env.py +0 -4
app.py CHANGED
@@ -18,6 +18,11 @@ def get_time():
18
  return datetime.datetime.now().time()
19
 
20
 
 
 
 
 
 
21
  def pretrain_rl_agent():
22
  global equity
23
  observations = env_train.reset()
@@ -26,6 +31,7 @@ def pretrain_rl_agent():
26
  observations = torch.as_tensor(observations).float()
27
  action = agent(observations)
28
  observations, reward, _ = env_train.step(action.data.to("cpu").numpy())
 
29
 
30
  action.backward()
31
 
@@ -92,7 +98,7 @@ data = data.tail(50000)
92
  data = data.set_index('Local time')
93
  date_split = '01.01.2023 16:04:00.000 GMT-0600'
94
 
95
- learning_rate = 0.001
96
  first_momentum = 0.0
97
  second_momentum = 0.0001
98
  transaction_cost = 0.0001
@@ -183,10 +189,10 @@ def trading_plot():
183
  # The UI of the demo defines here.
184
  with gr.Blocks() as demo:
185
  gr.Markdown("Auto trade bot.")
186
- gr.Markdown(f"Profit: {profit}")
187
 
188
- # dt = gr.Textbox(label="Current time")
189
- # demo.queue().load(get_time, inputs=None, outputs=dt, every=1)
190
 
191
  # for plotly it should follow this: https://gradio.app/plot-component-for-maps/
192
  candlestick_plot = gr.Plot().style()
 
18
  return datetime.datetime.now().time()
19
 
20
 
21
+ def get_profit():
22
+ global profit
23
+ return profit
24
+
25
+
26
  def pretrain_rl_agent():
27
  global equity
28
  observations = env_train.reset()
 
31
  observations = torch.as_tensor(observations).float()
32
  action = agent(observations)
33
  observations, reward, _ = env_train.step(action.data.to("cpu").numpy())
34
+ reward *= 1e3
35
 
36
  action.backward()
37
 
 
98
  data = data.set_index('Local time')
99
  date_split = '01.01.2023 16:04:00.000 GMT-0600'
100
 
101
+ learning_rate = 0.01
102
  first_momentum = 0.0
103
  second_momentum = 0.0001
104
  transaction_cost = 0.0001
 
189
  # The UI of the demo defines here.
190
  with gr.Blocks() as demo:
191
  gr.Markdown("Auto trade bot.")
192
+ # gr.Markdown(f"Profit: {profit}")
193
 
194
+ dt = gr.Textbox(label="Total profit")
195
+ demo.queue().load(get_profit, inputs=None, outputs=dt, every=1)
196
 
197
  # for plotly it should follow this: https://gradio.app/plot-component-for-maps/
198
  candlestick_plot = gr.Plot().style()
rl_agent/env.py CHANGED
@@ -37,16 +37,12 @@ class Environment:
37
  self.position_value = act
38
 
39
  self.history.pop(0)
40
-
41
  self.history.append(self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close']) # the price being traded
42
-
43
  self.position_value = self.position_value.item()
44
 
45
  return [self.position_value] + self.history, reward, self.done # obs, reward, done
46
 
47
 
48
-
49
-
50
  if __name__ == "__main__":
51
  data = pd.read_csv('./data/EURUSD_Candlestick_1_M_BID_01.01.2021-04.02.2023.csv')
52
  # data['Local time'] = pd.to_datetime(data['Local time'])
 
37
  self.position_value = act
38
 
39
  self.history.pop(0)
 
40
  self.history.append(self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close']) # the price being traded
 
41
  self.position_value = self.position_value.item()
42
 
43
  return [self.position_value] + self.history, reward, self.done # obs, reward, done
44
 
45
 
 
 
46
  if __name__ == "__main__":
47
  data = pd.read_csv('./data/EURUSD_Candlestick_1_M_BID_01.01.2021-04.02.2023.csv')
48
  # data['Local time'] = pd.to_datetime(data['Local time'])