File size: 2,005 Bytes
520f551
 
e5c2fbc
520f551
 
 
 
 
 
 
 
 
 
cad01cd
cd49248
6766e70
520f551
 
08f867e
 
b24c4a7
08f867e
b24c4a7
08f867e
fdd31f4
08f867e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import os
import gradio as gr
from PIL import Image

os.system("git clone https://github.com/AK391/stylegan2-ada-pytorch")

os.chdir("stylegan2-ada-pytorch")

os.mkdir("outputs")
os.mkdir("outputs/images")

os.system("gdown --id '11qCXjJg0-VQaKrdufnC5-XTTQJdTHbOC'")

def inference(truncation,seeds):
  os.system("python generate.py --outdir=./outputs/images/ --trunc="+str(truncation)+" --seeds="+str(int(seeds))+" --network=network-snapshot-000257.pkl")
  seeds = int(seeds)
  image = Image.open(f"./outputs/images/seed{seeds:04d}.png")
  return image

title = "MammoGANesis"
description = "Gradio demo for MammoGANesis: Controlled Generation of High-Resolution Mammograms for Radiology Education. This paper demonstrates the model’s ability to generate anatomically and medically relevant mammograms by achieving an average AUC of 0.54 in a double-blind study on four expert mammography radiologists to distinguish between generated and real images, ascribing to the high visual quality of the synthesized and edited mammograms, and to their potential use in advancing and facilitating medical education. To use it, add seed and truncation, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://cyrilzakka.github.io/radiology/2020/10/13/mammogenesis.html' target='_blank'>MammoGANesis: Controlled Generation of High-Resolution Mammograms for Radiology Education</a> | <a href='https://colab.research.google.com/drive/1ccC4CSWAEqx4BFXZGbPp8PxazdFBvxP4?usp=sharing' target='_blank'>Colab</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_mammogan' alt='visitor badge'></center>"

gr.Interface(inference,[gr.inputs.Slider(label="truncation",minimum=0, maximum=5, step=0.1, default=0.8),gr.inputs.Slider(label="Seed",minimum=0, maximum=1000, step=1, default=0)],"pil",title=title,description=description,article=article, examples=[
    [0.8,0]
    ]).launch(enable_queue=True,cache_examples=True)