File size: 1,490 Bytes
1fc266e d07ef02 1fc266e d07ef02 1fc266e d07ef02 eee62c8 1fc266e eee62c8 1fc266e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import os
import gradio as gr
from PIL import Image
os.system("git clone https://github.com/AK391/stylegan2-ada-pytorch")
os.chdir("stylegan2-ada-pytorch")
os.mkdir("outputs")
os.mkdir("outputs/images")
os.system("gdown --id '1DqbBf6298ech_o9Z-N2IA0FDxtw5_rlk'")
def inference(truncation,seeds):
os.system("python generate.py --outdir=./outputs/images/ --trunc="+str(truncation)+" --seeds="+str(int(seeds))+" --network=OCTaGAN.pkl")
seeds = int(seeds)
image = Image.open(f"./outputs/images/seed{seeds:04d}.png")
return image
title = "OCTaGAN"
description = "Gradio demo for OCTaGAN. OCTaGAN is a GAN trained on wide-field corneal Optical Coherence Tomography (OCT) scans to generate cornea scans with a variety of pathologies (e.g.keratoconus disease) and surgical procedures (e.g. Implantable Collamer Lens (ICL) surgery, intrastromal corneal ring segment (ICRS) surgery, and Laser vision correction). OCTaGAN can be used for educational purposes as well as for generating training examples for ML algorithms."
article = "<p style='text-align: center'><img src='https://visitor-badge.glitch.me/badge?page_id=AUBMC-AIM_octogan' alt='visitor badge'></center>"
gr.Interface(inference,[gr.inputs.Slider(label="truncation",minimum=0, maximum=5, step=0.1, default=0.8),gr.inputs.Slider(label="Seed",minimum=0, maximum=1000, step=1, default=0)],"pil",title=title,description=description,article=article, examples=[
[0.8,0]
]).launch(enable_queue=True,cache_examples=True) |