File size: 11,437 Bytes
ff6b794 8fd167a ff6b794 8fd167a ff6b794 8fd167a ff6b794 8fd167a ff6b794 8fd167a ff6b794 8fd167a ff6b794 8fd167a ff6b794 8fd167a ff6b794 8fd167a ff6b794 8fd167a ff6b794 8fd167a ff6b794 8fd167a ff6b794 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import json
import pdb
import tempfile
import re
from constants import *
from src.auto_leaderboard.model_metadata_type import ModelType
import dask.dataframe as dd
global data_component, filter_component
def validate_model_size(s):
pattern = r'^\d+B$|^-$'
if re.match(pattern, s):
return s
else:
return '-'
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def prediction_analyse(prediction_content):
# pdb.set_trace()
predictions = prediction_content.split("\n")
# 读取 ground_truth 文件
df = dd.read_parquet("./file/av_odyssey.parquet")
ground_truth = {row[0]: row[6] for row in df.itertuples(index=False, name=None)}
# 初始化结果统计字典
results = {i: {"correct": 0, "total": 0} for i in range(1, 27)}
# 遍历 predictions,计算每个 question_type_id 的正确预测数和总预测数
for prediction in predictions:
# pdb.set_trace()
prediction = prediction.strip()
if not prediction:
continue
try:
prediction = json.loads(prediction)
except json.JSONDecodeError:
print(f"Warning: Skipping invalid JSON data in line: {prediction}")
continue
question_id = prediction["question_id"]
if question_id not in ground_truth.keys():
continue
gt_item = ground_truth[question_id]
question_type_id = question_id.split("_")[0]
if prediction["prediction"] == gt_item:
results[int(question_type_id)]["correct"] += 1
results[int(question_type_id)]["total"] += 1
return results
def add_new_eval(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
):
if input_file is None:
return "Error! Empty file!"
else:
# v1 evaluation
content = input_file.decode("utf-8")
prediction = prediction_analyse(content)
csv_data = pd.read_csv(CSV_DIR)
# pdb.set_trace()
each_task_accuracy = {i: round(prediction[i]["correct"] / prediction[i]["total"] * 100, 1) for i in range(1, 27)}
# count for average image\video\all
total_correct_timbre = round(sum(prediction[i]["correct"] for i in range(timbre_task[0], timbre_task[1] + 1)) / sum(prediction[i]["total"] for i in range(timbre_task[0], timbre_task[1] + 1)) * 100, 1)
total_correct_tone = round(sum(prediction[i]["correct"] for i in range(tone_task[0], tone_task[1] + 1)) / sum(prediction[i]["total"] for i in range(tone_task[0], tone_task[1] + 1)) * 100, 1)
total_correct_melody = round(sum(prediction[i]["correct"] for i in range(melody_task[0], melody_task[1] + 1)) / sum(prediction[i]["total"] for i in range(melody_task[0], melody_task[1] + 1)) * 100, 1)
total_correct_space = round(sum(prediction[i]["correct"] for i in range(space_task[0], space_task[1] + 1)) / sum(prediction[i]["total"] for i in range(space_task[0], space_task[1] + 1)) * 100, 1)
total_correct_time = round(sum(prediction[i]["correct"] for i in range(time_task[0], time_task[1] + 1)) / sum(prediction[i]["total"] for i in range(time_task[0], time_task[1] + 1)) * 100, 1)
total_correct_hallucination = round(sum(prediction[i]["correct"] for i in range(hallucination_task[0], hallucination_task[1] + 1)) / sum(prediction[i]["total"] for i in range(hallucination_task[0], hallucination_task[1] + 1)) * 100, 1)
total_correct_intricay = round(sum(prediction[i]["correct"] for i in range(intricay_task[0], intricay_task[1] + 1)) / sum(prediction[i]["total"] for i in range(intricay_task[0], intricay_task[1] + 1)) * 100, 1)
all_average = round(sum(prediction[i]["correct"] for i in range(1, 27)) / sum(prediction[i]["total"] for i in range(1, 27)) * 100, 1)
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox
else:
model_name = revision_name_textbox
model_name_list = csv_data['Model']
name_list = [name.split(']')[0][1:] for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '':
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
# add new data
new_data = [
model_name,
all_average,
total_correct_timbre,
total_correct_tone,
total_correct_melody,
total_correct_space,
total_correct_time,
total_correct_hallucination,
total_correct_intricay,
each_task_accuracy[1],
each_task_accuracy[2],
each_task_accuracy[3],
each_task_accuracy[4],
each_task_accuracy[5],
each_task_accuracy[6],
each_task_accuracy[7],
each_task_accuracy[8],
each_task_accuracy[9],
each_task_accuracy[10],
each_task_accuracy[11],
each_task_accuracy[12],
each_task_accuracy[13],
each_task_accuracy[14],
each_task_accuracy[15],
each_task_accuracy[16],
each_task_accuracy[17],
each_task_accuracy[18],
each_task_accuracy[19],
each_task_accuracy[20],
each_task_accuracy[21],
each_task_accuracy[22],
each_task_accuracy[23],
each_task_accuracy[24],
each_task_accuracy[25],
each_task_accuracy[26],
]
csv_data.loc[col] = new_data
csv_data = csv_data.to_csv(CSV_DIR, index=False)
return 0
def get_baseline_df():
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Avg. All", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
df = df[present_columns]
return df
def get_all_df():
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Avg. All", ascending=False)
return df
def switch_version(version):
return f"当前版本: {version}"
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# table seed-bench-v1
with gr.TabItem("🏅 AV-Odyssey Benchmark", elem_id="av-odyssey-tab-table", id=1):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
gr.Markdown(
TABLE_INTRODUCTION
)
# selection for column part:
checkbox_group = gr.CheckboxGroup(
choices=TASK_INFO,
value=AVG_INFO,
label="Evaluation Dimension",
interactive=True,
)
baseline_value = get_baseline_df()
baseline_header = MODEL_INFO + checkbox_group.value
baseline_datatype = ['markdown'] * len(MODEL_INFO) + ['number'] * len(checkbox_group.value)
# 创建数据帧组件
data_component = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
def on_filter_model_size_method_change(selected_columns):
updated_data = get_all_df()
# columns:
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
# pdb.set_trace()
return filter_component.value
def on_average_type_change(average_type):
return get_baseline_df()
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
# table 2
with gr.TabItem("📝 About", elem_id="av-odyssey-tab-table", id=2):
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
# table 3
with gr.TabItem("🚀 Submit here! ", elem_id="av-odyssey-tab-table", id=3):
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name", placeholder="VideoLLaMA2"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name", placeholder="VideoLLaMA2"
)
model_link = gr.Textbox(
label="Model Link", placeholder="https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F"
)
with gr.Column():
input_file = gr.inputs.File(label = "Click to Upload a json File", file_count="single", type='binary')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs = [
input_file,
model_name_textbox,
revision_name_textbox,
model_link
],
)
def refresh_data():
value1 = get_baseline_df()
return value1
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
refresh_data, outputs=data_component
)
block.launch() |