|
from dataclasses import dataclass
|
|
|
|
|
|
|
|
@dataclass
|
|
class ColumnContent:
|
|
name: str
|
|
type: str
|
|
displayed_by_default: bool
|
|
hidden: bool = False
|
|
|
|
def fields(raw_class):
|
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
|
|
|
@dataclass(frozen=True)
|
|
class AutoEvalColumn:
|
|
model_type_symbol = ColumnContent("T", "str", True)
|
|
model = ColumnContent("Model", "markdown", True)
|
|
average = ColumnContent("Average ⬆️", "number", True)
|
|
arc = ColumnContent("ARC", "number", True)
|
|
hellaswag = ColumnContent("HellaSwag", "number", True)
|
|
mmlu = ColumnContent("MMLU", "number", True)
|
|
truthfulqa = ColumnContent("TruthfulQA", "number", True)
|
|
model_type = ColumnContent("Type", "str", False)
|
|
precision = ColumnContent("Precision", "str", False, True)
|
|
license = ColumnContent("Hub License", "str", False)
|
|
params = ColumnContent("#Params (B)", "number", False)
|
|
likes = ColumnContent("Hub ❤️", "number", False)
|
|
revision = ColumnContent("Model sha", "str", False, False)
|
|
dummy = ColumnContent("model_name_for_query", "str", True)
|
|
|
|
@dataclass(frozen=True)
|
|
class EloEvalColumn:
|
|
model = ColumnContent("Model", "markdown", True)
|
|
gpt4 = ColumnContent("GPT-4 (all)", "number", True)
|
|
human_all = ColumnContent("Human (all)", "number", True)
|
|
human_instruct = ColumnContent("Human (instruct)", "number", True)
|
|
human_code_instruct = ColumnContent("Human (code-instruct)", "number", True)
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class EvalQueueColumn:
|
|
model = ColumnContent("model", "markdown", True)
|
|
revision = ColumnContent("revision", "str", True)
|
|
private = ColumnContent("private", "bool", True)
|
|
precision = ColumnContent("precision", "bool", True)
|
|
weight_type = ColumnContent("weight_type", "str", "Original")
|
|
status = ColumnContent("status", "str", True)
|
|
|
|
LLAMAS = ["huggingface/llama-7b", "huggingface/llama-13b", "huggingface/llama-30b", "huggingface/llama-65b"]
|
|
|
|
|
|
KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
|
|
VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
|
|
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
|
|
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
|
|
MODEL_PAGE = "https://huggingface.co/models"
|
|
LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/"
|
|
VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta"
|
|
ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
|
|
|
|
|
def model_hyperlink(link, model_name):
|
|
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
|
|
|
|
|
def make_clickable_model(model_name):
|
|
link = f"https://huggingface.co/{model_name}"
|
|
|
|
if model_name in LLAMAS:
|
|
link = LLAMA_LINK
|
|
model_name = model_name.split("/")[1]
|
|
elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
|
link = VICUNA_LINK
|
|
model_name = "stable-vicuna-13b"
|
|
elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
|
link = ALPACA_LINK
|
|
model_name = "alpaca-13b"
|
|
if model_name == "dolly-12b":
|
|
link = DOLLY_LINK
|
|
elif model_name == "vicuna-13b":
|
|
link = VICUNA_LINK
|
|
elif model_name == "koala-13b":
|
|
link = KOALA_LINK
|
|
elif model_name == "oasst-12b":
|
|
link = OASST_LINK
|
|
|
|
|
|
|
|
return model_hyperlink(link, model_name)
|
|
|
|
def styled_error(error):
|
|
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
|
|
|
def styled_warning(warn):
|
|
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
|
|
|
def styled_message(message):
|
|
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>" |