Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,54 +2,59 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
from gtts import gTTS
|
4 |
import tempfile
|
|
|
5 |
|
6 |
# Initialize the speech-to-text transcriber
|
7 |
-
from transformers import pipeline
|
8 |
transcriber = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
9 |
|
10 |
-
# Initialize the
|
11 |
-
|
12 |
-
|
13 |
|
14 |
def answer_question(context, question=None, audio=None):
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
qa_result = qa_model(question=question_text, context=context)
|
25 |
-
answer = qa_result["answer"]
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
audio_path = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
|
30 |
-
tts.save(audio_path)
|
31 |
|
32 |
-
return answer, audio_path
|
33 |
|
34 |
# Define the Gradio interface
|
35 |
-
context_input = gr.Textbox(label="Context")
|
36 |
question_input = gr.Textbox(label="Question")
|
37 |
-
audio_input = gr.Audio(type="filepath", label="Question Audio")
|
38 |
|
39 |
output_text = gr.Textbox(label="Answer")
|
40 |
-
output_audio = gr.Audio(label="Answer Audio")
|
41 |
|
42 |
-
|
43 |
fn=answer_question,
|
44 |
inputs=[context_input, question_input, audio_input],
|
45 |
outputs=[output_text, output_audio],
|
46 |
-
title="Question Answering",
|
47 |
-
description="
|
48 |
examples=[
|
49 |
["The capital of France is Paris.", "What is the capital of France?", None],
|
50 |
["OpenAI is famous for developing GPT-3.", "What is OpenAI known for?", None],
|
51 |
-
]
|
52 |
)
|
53 |
|
54 |
-
# Launch the Gradio
|
55 |
-
|
|
|
|
2 |
from transformers import pipeline
|
3 |
from gtts import gTTS
|
4 |
import tempfile
|
5 |
+
import os
|
6 |
|
7 |
# Initialize the speech-to-text transcriber
|
|
|
8 |
transcriber = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
9 |
|
10 |
+
# Initialize the question-answering model
|
11 |
+
qa_model = pipeline("question-answering", model="AVISHKAARAM/avishkaarak-ekta-hindi")
|
12 |
+
|
13 |
|
14 |
def answer_question(context, question=None, audio=None):
|
15 |
+
try:
|
16 |
+
# If audio is provided, transcribe it
|
17 |
+
if audio:
|
18 |
+
transcription_result = transcriber(audio)["text"]
|
19 |
+
question_text = transcription_result
|
20 |
+
else:
|
21 |
+
question_text = question
|
22 |
+
|
23 |
+
# Generate an answer to the question
|
24 |
+
qa_result = qa_model(question=question_text, context=context)
|
25 |
+
answer = qa_result["answer"]
|
26 |
+
|
27 |
+
# Convert the answer to speech
|
28 |
+
tts = gTTS(text=answer, lang="en")
|
29 |
+
audio_path = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
|
30 |
+
tts.save(audio_path)
|
31 |
|
32 |
+
return answer, audio_path
|
|
|
|
|
33 |
|
34 |
+
except Exception as e:
|
35 |
+
return str(e), None
|
|
|
|
|
36 |
|
|
|
37 |
|
38 |
# Define the Gradio interface
|
39 |
+
context_input = gr.Textbox(label="Context", lines=3)
|
40 |
question_input = gr.Textbox(label="Question")
|
41 |
+
audio_input = gr.Audio(type="filepath", label="Question (Audio Input)")
|
42 |
|
43 |
output_text = gr.Textbox(label="Answer")
|
44 |
+
output_audio = gr.Audio(label="Answer (Audio Output)")
|
45 |
|
46 |
+
interface = gr.Interface(
|
47 |
fn=answer_question,
|
48 |
inputs=[context_input, question_input, audio_input],
|
49 |
outputs=[output_text, output_audio],
|
50 |
+
title="Multimodal Question Answering",
|
51 |
+
description="Provide a context and either a text question or an audio question to get an answer.",
|
52 |
examples=[
|
53 |
["The capital of France is Paris.", "What is the capital of France?", None],
|
54 |
["OpenAI is famous for developing GPT-3.", "What is OpenAI known for?", None],
|
55 |
+
],
|
56 |
)
|
57 |
|
58 |
+
# Launch the Gradio app
|
59 |
+
if __name__ == "__main__":
|
60 |
+
interface.launch()
|