|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
import torch |
|
from threading import Thread |
|
|
|
MODEL_ID = "HODACHI/EZO-Common-9B-gemma-2-it" |
|
DTYPE = torch.bfloat16 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
device_map="cuda", |
|
torch_dtype=DTYPE, |
|
) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
chat = [] |
|
for user, assistant in history: |
|
chat.append({"role": "user", "content": user}) |
|
chat.append({"role": "assistant", "content": assistant}) |
|
chat.append({"role": "user", "content": message}) |
|
|
|
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) |
|
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generation_kwargs = dict( |
|
input_ids=inputs, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
streamer=streamer, |
|
) |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
response = "" |
|
for new_text in streamer: |
|
response += new_text |
|
yield response |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Slider(minimum=1, maximum=2048, value=150, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |