Spaces:
Paused
Paused
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
import torch | |
from threading import Thread | |
MODEL_ID = "HODACHI/EZO-Common-9B-gemma-2-it" | |
DTYPE = torch.bfloat16 | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
device_map="cuda", | |
torch_dtype=DTYPE, | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
chat = [] | |
for user, assistant in history: | |
chat.append({"role": "user", "content": user}) | |
chat.append({"role": "assistant", "content": assistant}) | |
chat.append({"role": "user", "content": message}) | |
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict( | |
input_ids=inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
streamer=streamer, | |
) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
response = "" | |
for new_text in streamer: | |
response += new_text | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=2048, value=150, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |