File size: 5,900 Bytes
2c23f34
 
4bc4dc4
 
 
 
 
2c23f34
4bc4dc4
 
 
 
 
 
 
2c23f34
4bc4dc4
 
2c23f34
4bc4dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c23f34
 
 
 
 
 
4bc4dc4
2c23f34
 
 
 
 
 
 
 
 
 
 
 
 
4bc4dc4
2c23f34
 
 
 
 
 
4bc4dc4
2c23f34
 
 
4bc4dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c23f34
4bc4dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c23f34
4bc4dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c23f34
 
4bc4dc4
 
 
 
 
 
 
 
 
 
 
 
 
2c23f34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
from huggingface_hub import InferenceClient
from collections import defaultdict, Counter
import random
import threading
import time
import os

# 比較するLLMのリストを定義
llm_list = [
    "HuggingFaceH4/zephyr-7b-beta",
    "AXCXEPT/EZO-Common-9B-gemma-2-it",
    # "モデル名1",
    # "モデル名2",
]

# 各LLMの出現回数を管理
llm_counts = defaultdict(int)

# 各LLMのInferenceClientを作成
clients = {llm: InferenceClient(llm) for llm in llm_list}

# LLMを等しくランダムに選択する関数
def select_llms():
    min_count = min(llm_counts.values()) if llm_counts else 0
    candidates = [llm for llm in llm_list if llm_counts[llm] == min_count]
    if len(candidates) < 2:
        candidates = llm_list
    selected_llms = random.sample(candidates, 2)
    for llm in selected_llms:
        llm_counts[llm] += 1
    return selected_llms

# 各LLMに対する応答を生成する関数
def respond_llm(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    llm_client,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in llm_client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.get("content", "")
        response += token
        yield response

# 投票結果を保存するファイルのパス
VOTE_FILE = "votes.txt"

# 投票結果を保存する関数
def save_vote(selected_llm):
    # 投票結果をファイルに保存
    with open(VOTE_FILE, "a") as f:
        f.write(f"{selected_llm}\n")
    return gr.update(visible=True, value="投票ありがとうございました!")

# リーダーボードを更新する関数
def update_leaderboard():
    try:
        with open(VOTE_FILE, "r") as f:
            votes = f.readlines()
        vote_counts = Counter(vote.strip() for vote in votes)
        leaderboard = sorted(vote_counts.items(), key=lambda x: x[1], reverse=True)
        leaderboard_text = "## リーダーボード\n\n"
        for llm, count in leaderboard:
            leaderboard_text += f"- {llm}: {count}票\n"
    except FileNotFoundError:
        leaderboard_text = "まだ投票がありません。"
    return leaderboard_text

# Gradioインターフェースの構築
def chat_interface():
    llm1, llm2 = select_llms()
    client1 = clients[llm1]
    client2 = clients[llm2]

    with gr.Blocks() as demo:
        gr.Markdown("## LLM比較アリーナ")

        with gr.Row():
            gr.Markdown(f"### LLM1: {llm1}")
            gr.Markdown(f"### LLM2: {llm2}")

        with gr.Row():
            with gr.Column():
                chat1 = gr.ChatInterface(
                    lambda message, history, system_message, max_tokens, temperature, top_p:
                        respond_llm(message, history, system_message, max_tokens, temperature, top_p, client1),
                    additional_inputs=[
                        gr.Textbox(value="あなたはフレンドリーなチャットボットです。", label="システムメッセージ"),
                        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="最大トークン数"),
                        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
                        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="トップP"),
                    ],
                )
            with gr.Column():
                chat2 = gr.ChatInterface(
                    lambda message, history, system_message, max_tokens, temperature, top_p:
                        respond_llm(message, history, system_message, max_tokens, temperature, top_p, client2),
                    additional_inputs=[
                        gr.Textbox(value="あなたはフレンドリーなチャットボットです。", label="システムメッセージ"),
                        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="最大トークン数"),
                        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
                        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="トップP"),
                    ],
                )

        # 投票セクション
        with gr.Row():
            vote = gr.Radio([llm1, llm2], label="どちらの応答が良かったですか?")
            submit = gr.Button("投票")
            result = gr.Textbox(label="", visible=False)

        submit.click(save_vote, inputs=vote, outputs=result)

        # リーダーボードの表示
        leaderboard = gr.Markdown(update_leaderboard())

    return demo

# リーダーボードを定期的に更新するスレッド
def refresh_leaderboard(leaderboard_component):
    while True:
        leaderboard_text = update_leaderboard()
        leaderboard_component.value = leaderboard_text
        time.sleep(60)  # 60秒ごとに更新

if __name__ == "__main__":
    demo = chat_interface()

    # リーダーボードコンポーネントを取得
    leaderboard_component = None
    for component in demo.blocks:
        if isinstance(component, gr.Markdown) and "リーダーボード" in component.value:
            leaderboard_component = component
            break

    # リーダーボード更新スレッドの開始
    if leaderboard_component:
        threading.Thread(target=refresh_leaderboard, args=(leaderboard_component,), daemon=True).start()

    demo.launch()