Spaces:
Runtime error
Runtime error
import gradio as gr | |
from base64 import b64encode | |
import numpy | |
import torch | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel | |
from PIL import Image | |
from torch import autocast | |
from torchvision import transforms as tfms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
import torchvision.transforms as T | |
torch.manual_seed(1) | |
logging.set_verbosity_error() | |
torch_device = "cpu" | |
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") | |
# Load the tokenizer and text encoder to tokenize and encode the text. | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
# The UNet model for generating the latents. | |
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") | |
# The noise scheduler | |
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) | |
vae = vae.to(torch_device) | |
text_encoder = text_encoder.to(torch_device) | |
unet = unet.to(torch_device); | |
token_emb_layer = text_encoder.text_model.embeddings.token_embedding | |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding | |
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] | |
position_embeddings = pos_emb_layer(position_ids) | |
def pil_to_latent(input_im): | |
# Single image -> single latent in a batch (so size 1, 4, 64, 64) | |
with torch.no_grad(): | |
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling | |
return 0.18215 * latent.latent_dist.sample() | |
def latents_to_pil(latents): | |
# bath of latents -> list of images | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def get_output_embeds(input_embeddings): | |
# CLIP's text model uses causal mask, so we prepare it here: | |
bsz, seq_len = input_embeddings.shape[:2] | |
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) | |
# Getting the output embeddings involves calling the model with passing output_hidden_states=True | |
# so that it doesn't just return the pooled final predictions: | |
encoder_outputs = text_encoder.text_model.encoder( | |
inputs_embeds=input_embeddings, | |
attention_mask=None, # We aren't using an attention mask so that can be None | |
causal_attention_mask=causal_attention_mask.to(torch_device), | |
output_attentions=None, | |
output_hidden_states=True, # We want the output embs not the final output | |
return_dict=None, | |
) | |
# We're interested in the output hidden state only | |
output = encoder_outputs[0] | |
# There is a final layer norm we need to pass these through | |
output = text_encoder.text_model.final_layer_norm(output) | |
# And now they're ready! | |
return output | |
def generate_with_embs(text_embeddings, seed, max_length): | |
height = 512 # default height of Stable Diffusion | |
width = 512 # default width of Stable Diffusion | |
num_inference_steps = 10 # Number of denoising steps | |
guidance_scale = 7.5 # Scale for classifier-free guidance | |
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise | |
batch_size = 1 | |
# max_length = text_input.input_ids.shape[-1] | |
uncond_input = tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# Prep Scheduler | |
set_timesteps(scheduler, num_inference_steps) | |
# Prep latents | |
latents = torch.randn( | |
(batch_size, unet.in_channels, height // 8, width // 8), | |
generator=generator, | |
) | |
latents = latents.to(torch_device) | |
latents = latents * scheduler.init_noise_sigma | |
# Loop | |
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = scheduler.sigmas[i] | |
latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
return latents_to_pil(latents)[0] | |
# Prep Scheduler | |
def set_timesteps(scheduler, num_inference_steps): | |
scheduler.set_timesteps(num_inference_steps) | |
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925 | |
def embed_style(prompt, style_embed, style_seed): | |
# Tokenize | |
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
input_ids = text_input.input_ids.to(torch_device) | |
# Get token embeddings | |
token_embeddings = token_emb_layer(input_ids) | |
replacement_token_embedding = style_embed.to(torch_device) | |
# replacement_token_embedding = birb_embed[embed_values[4]].to(torch_device) | |
# Assuming token_embeddings has shape [batch_size, seq_length, embedding_dim] | |
replacement_token_embedding = replacement_token_embedding[:768] # Adjust the size | |
replacement_token_embedding = replacement_token_embedding.unsqueeze(0) # Make it [1, 768] if necessary | |
# Insert this into the token embeddings | |
# token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device) | |
indices = torch.where(input_ids[0] == 6829)[0] | |
for index in indices: | |
token_embeddings[0, index] = replacement_token_embedding.to(torch_device) | |
# Combine with pos embs | |
input_embeddings = token_embeddings + position_embeddings | |
# Feed through to get final output embs | |
modified_output_embeddings = get_output_embeds(input_embeddings) | |
# And generate an image with this: | |
max_length = text_input.input_ids.shape[-1] | |
return generate_with_embs(modified_output_embeddings, style_seed, max_length) | |
def loss_style(prompt, style_embed, style_seed): | |
# Tokenize | |
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
input_ids = text_input.input_ids.to(torch_device) | |
# Get token embeddings | |
token_embeddings = token_emb_layer(input_ids) | |
# The new embedding - our special birb word | |
replacement_token_embedding = style_embed.to(torch_device) | |
# Assuming token_embeddings has shape [batch_size, seq_length, embedding_dim] | |
replacement_token_embedding = replacement_token_embedding[:768] # Adjust the size | |
replacement_token_embedding = replacement_token_embedding.unsqueeze(0) # Make it [1, 768] if necessary | |
indices = torch.where(input_ids[0] == 6829)[0] # Extract indices where the condition is True | |
print(f"indices: {indices}") # Debug print | |
for index in indices: | |
print(f"index: {index}") # Debug print | |
token_embeddings[0, index] = replacement_token_embedding.to(torch_device) # Update each index | |
# Insert this into the token embeddings | |
# token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device) | |
# Combine with pos embs | |
input_embeddings = token_embeddings + position_embeddings | |
# Feed through to get final output embs | |
modified_output_embeddings = get_output_embeds(input_embeddings) | |
# And generate an image with this: | |
max_length = text_input.input_ids.shape[-1] | |
return generate_loss_based_image(modified_output_embeddings, style_seed,max_length) | |
def sepia_loss(images): | |
sepia_tone = 0.393 * images[:,0] + 0.769 * images[:,1] + 0.189 * images[:,2] | |
error = torch.abs(sepia_tone - 0.5).mean() | |
return error | |
def generate_loss_based_image(text_embeddings, seed, max_length): | |
height = 64 | |
width = 64 | |
num_inference_steps = 10 | |
guidance_scale = 8 | |
generator = torch.manual_seed(64) | |
batch_size = 1 | |
loss_scale = 200 | |
uncond_input = tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# Prep Scheduler | |
set_timesteps(scheduler, num_inference_steps+1) | |
# Prep latents | |
latents = torch.randn( | |
(batch_size, unet.in_channels, height // 8, width // 8), | |
generator=generator, | |
) | |
latents = latents.to(torch_device) | |
latents = latents * scheduler.init_noise_sigma | |
sched_out = None | |
# Loop | |
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = scheduler.sigmas[i] | |
latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# perform CFG | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
### ADDITIONAL GUIDANCE ### | |
if i%5 == 0 and i>0: | |
# Requires grad on the latents | |
latents = latents.detach().requires_grad_() | |
# Get the predicted x0: | |
scheduler._step_index -= 1 | |
latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample | |
# Decode to image space | |
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) | |
# Calculate loss | |
loss = sepia_loss(denoised_images) * loss_scale | |
# Occasionally print it out | |
# if i%10==0: | |
print(i, 'loss:', loss) | |
# Get gradient | |
cond_grad = torch.autograd.grad(loss, latents)[0] | |
# Modify the latents based on this gradient | |
latents = latents.detach() - cond_grad * sigma**2 | |
# To PIL Images | |
im_t0 = latents_to_pil(latents_x0)[0] | |
im_next = latents_to_pil(latents)[0] | |
# Now step with scheduler | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
return latents_to_pil(latents)[0] | |
def generate_image_from_prompt(text_in, style_in): | |
prompt = 'A campfire (oil on canvas)' | |
style_seed = 32 | |
dict_styles = {'<gartic-phone>':'learned_embeds_gartic-phone.bin', | |
'<hawaiian shirt>':'learned_embeds_hawaiian-shirt.bin', | |
'<gp>': 'learned_embeds_phone01.bin', | |
'<style-spdmn>':'learned_embeds_style-spdmn.bin', | |
'<yvmqznrm>': 'learned_embedssd_yvmqznrm.bin'} | |
learn_embed = ['learned_embeds_gartic-phone.bin', 'learned_embeds_hawaiian-shirt_style.bin', 'learned_embeds_phone01_style.bin', 'learned_embeds_style-spdmn_style.bin', 'learned_embedssd_yvmqznrm_style.bin'] | |
style = dict_styles # (learn_embed[0]) | |
birb_embed = torch.load(learn_embed[0]) | |
#birb_embed.keys(), dict_styles['<gartic-phone>'].shape | |
#style_embed = torch.load(dict_styles) | |
#birb_embed = torch.load('learned_embeds.bin') | |
#birb_embed.keys(), birb_embed['<birb-style>'].shape | |
generated_image = generate_embed_style(prompt,birb_embed, style_seed) | |
generate_loss_details = (generate_loss_style(prompt, birb_embed, style_seed)) | |
#generate_loss_style(prompt, style_embed, style_seed): | |
#loss_generated_img = (loss_style(prompt, style_embed[0], style_seed)) | |
return [generated_image] | |
# Define Interface | |
title = 'Stable Diffusion Art Generator' | |
# Add clear and concise labels and instructions | |
prompt_label = "Enter a prompt (e.g., 'A campfire (oil on canvas)'" | |
styles_label = "Select a Pretrained Style:" | |
instructions = "Explore creative art generation using Stable Diffusion. Enter a prompt and choose a style to get started." | |
demo = gr.Interface(generate_image_from_prompt, | |
inputs=[ | |
gr.Textbox('A campfire (oil on canvas)', label=prompt_label), | |
gr.Dropdown( | |
['learned_embeds_gartic-phone', 'learned_embeds_hawaiian-shirt', 'learned_embeds_phone01', 'learned_embeds_style-spdmn', 'learned_embedssd_yvmqznrm'], | |
value="learned_embeds_gartic-phone", | |
label=styles_label | |
), | |
], | |
outputs=[ | |
gr.Gallery(label="Generated Images", show_label=False, elem_id="gallery", columns=[2], rows=[2], | |
object_fit="contain"), | |
], | |
title=title, | |
description=instructions | |
) | |
demo.launch(debug=True) | |