Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -48,33 +48,12 @@ If all you want is to make a picture with some text, you could ignore this noteb
|
|
48 |
What we want to do in this notebook is dig a little deeper into how this works, so we'll start by checking that the example code runs. Again, this is adapted from the [HF notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb) and looks very similar to what you'll find if you inspect [the `__call__()` method of the stable diffusion pipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L200).
|
49 |
"""
|
50 |
|
51 |
-
# Some settings
|
52 |
-
prompt = ["A watercolor painting of an otter"]
|
53 |
-
height = 512 # default height of Stable Diffusion
|
54 |
-
width = 512 # default width of Stable Diffusion
|
55 |
-
num_inference_steps = 30 # Number of denoising steps
|
56 |
-
guidance_scale = 7.5 # Scale for classifier-free guidance
|
57 |
-
generator = torch.manual_seed(32) # Seed generator to create the inital latent noise
|
58 |
-
batch_size = 1
|
59 |
-
|
60 |
-
# Prep text
|
61 |
-
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
62 |
-
with torch.no_grad():
|
63 |
-
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
|
64 |
-
max_length = text_input.input_ids.shape[-1]
|
65 |
-
uncond_input = tokenizer(
|
66 |
-
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
67 |
-
)
|
68 |
-
with torch.no_grad():
|
69 |
-
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
70 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
71 |
|
72 |
# Prep Scheduler
|
73 |
def set_timesteps(scheduler, num_inference_steps):
|
74 |
scheduler.set_timesteps(num_inference_steps)
|
75 |
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
76 |
|
77 |
-
set_timesteps(scheduler,num_inference_steps)
|
78 |
|
79 |
# Prep latents
|
80 |
latents = torch.randn(
|
@@ -87,36 +66,6 @@ latents = latents * scheduler.init_noise_sigma # Scaling (previous versions did
|
|
87 |
# Loop
|
88 |
with autocast("cuda"): # will fallback to CPU if no CUDA; no autocast for MPS
|
89 |
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
90 |
-
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
91 |
-
latent_model_input = torch.cat([latents] * 2)
|
92 |
-
sigma = scheduler.sigmas[i]
|
93 |
-
# Scale the latents (preconditioning):
|
94 |
-
# latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) # Diffusers 0.3 and below
|
95 |
-
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
96 |
-
|
97 |
-
# predict the noise residual
|
98 |
-
with torch.no_grad():
|
99 |
-
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
100 |
-
|
101 |
-
# perform guidance
|
102 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
103 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
104 |
-
|
105 |
-
# compute the previous noisy sample x_t -> x_t-1
|
106 |
-
# latents = scheduler.step(noise_pred, i, latents)["prev_sample"] # Diffusers 0.3 and below
|
107 |
-
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
108 |
-
|
109 |
-
# scale and decode the image latents with vae
|
110 |
-
latents = 1 / 0.18215 * latents
|
111 |
-
with torch.no_grad():
|
112 |
-
image = vae.decode(latents).sample
|
113 |
-
|
114 |
-
# Display
|
115 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
116 |
-
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
117 |
-
images = (image * 255).round().astype("uint8")
|
118 |
-
pil_images = [Image.fromarray(image) for image in images]
|
119 |
-
pil_images[0]
|
120 |
|
121 |
"""It's working, but that's quite a bit of code! Let's look at the components one by one.
|
122 |
|
@@ -187,6 +136,7 @@ We use a text encoder model to turn our text into a set of 'embeddings' which ar
|
|
187 |
# Our text prompt
|
188 |
prompt = 'A picture of a puppy'
|
189 |
|
|
|
190 |
"""We begin with tokenization:"""
|
191 |
|
192 |
# Turn the text into a sequnce of tokens:
|
|
|
48 |
What we want to do in this notebook is dig a little deeper into how this works, so we'll start by checking that the example code runs. Again, this is adapted from the [HF notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb) and looks very similar to what you'll find if you inspect [the `__call__()` method of the stable diffusion pipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L200).
|
49 |
"""
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Prep Scheduler
|
53 |
def set_timesteps(scheduler, num_inference_steps):
|
54 |
scheduler.set_timesteps(num_inference_steps)
|
55 |
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
56 |
|
|
|
57 |
|
58 |
# Prep latents
|
59 |
latents = torch.randn(
|
|
|
66 |
# Loop
|
67 |
with autocast("cuda"): # will fallback to CPU if no CUDA; no autocast for MPS
|
68 |
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
"""It's working, but that's quite a bit of code! Let's look at the components one by one.
|
71 |
|
|
|
136 |
# Our text prompt
|
137 |
prompt = 'A picture of a puppy'
|
138 |
|
139 |
+
|
140 |
"""We begin with tokenization:"""
|
141 |
|
142 |
# Turn the text into a sequnce of tokens:
|