File size: 4,004 Bytes
26ac5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

# import gradio as gr

# # Use a pipeline as a high-level helper
# from transformers import pipeline

# # Use a pipeline as a high-level helper
# # Load model directly
# from transformers import AutoImageProcessor, AutoModelForImageClassification

# # processor = AutoImageProcessor.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
# # model = AutoModelForImageClassification.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
# pipe = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")


# # $ pip install gradio_client fastapi uvicorn

# import requests
# from PIL import Image
# from transformers import pipeline
# import io
# import base64

# Initialize the pipeline
# pipe = pipeline('image-classification')

# def load_image_from_path(image_path):
#     return Image.open(image_path)

# def load_image_from_url(image_url):
#     response = requests.get(image_url)
#     return Image.open(io.BytesIO(response.content))

# def load_image_from_base64(base64_string):
#     image_data = base64.b64decode(base64_string)
#     return Image.open(io.BytesIO(image_data))

# def predict(image_input):
#     if isinstance(image_input, str):
#         if image_input.startswith('http'):
#             image = load_image_from_url(image_input)
#         elif image_input.startswith('/'):
#             image = load_image_from_path(image_input)
#         else:
#             image = load_image_from_base64(image_input)
#     elif isinstance(image_input, Image.Image):
#         image = image_input
#     else:
#         raise ValueError("Incorrect format used for image. Should be an URL linking to an image, a base64 string, a local path, or a PIL image.")
    
#     return pipe(image)


# def predict(image):
#   return pipe(image)

# def main():
#     # image_input = 'path_or_url_or_base64'  # Update with actual input
#     # output = predict(image_input)
#     # print(output)
        
    # demo = gr.Interface(
    #   fn=predict,
    #   inputs='image',
    #   outputs='text',
    # )

    # demo.launch()

# import requests
# import torch
# from PIL import Image
# from torchvision import transforms

# def predict(inp):
#     inp = Image.fromarray(inp.astype("uint8"), "RGB")
#     inp = transforms.ToTensor()(inp).unsqueeze(0)
#     with torch.no_grad():
#         prediction = torch.nn.functional.softmax(model(inp.to(device))[0], dim=0)
#     return {labels[i]: float(prediction[i]) for i in range(1000)}


# inputs = gr.Image()
# outputs = gr.Label(num_top_classes=2)

# io = gr.Interface(
#     fn=predict, inputs=inputs, outputs=outputs, examples=["dog.jpg"]
# )
# io.launch(inline=False, share=True)







# import gradio as gr
# from transformers import pipeline

# pipeline = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")

# def predict(image):
#   predictions = pipeline(image)
#   return {p["label"]: p["score"] for p in predictions}

# gr.Interface(
#     predict,
#     inputs=gr.inputs.Image(label="Upload Image", type="filepath"),
#     outputs=gr.outputs.Label(num_top_classes=2),
#     title="AI Generated? Or Not?",
#     allow_flagging="manual"
# ).launch()

    

# if __name__ == "__main__":
#     main()

import gradio as gr
from transformers import pipeline

pipeline = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")

def predict(input_img):
    predictions = pipeline(input_img)
    return input_img, {p["label"]: p["score"] for p in predictions} 

gradio_app = gr.Interface(
    predict,
    inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
    title="Hot Dog? Or Not?",
)

if __name__ == "__main__":
    gradio_app.launch()