Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# # Use a pipeline as a high-level helper | |
# from transformers import pipeline | |
# # Use a pipeline as a high-level helper | |
# # Load model directly | |
# from transformers import AutoImageProcessor, AutoModelForImageClassification | |
# # processor = AutoImageProcessor.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat") | |
# # model = AutoModelForImageClassification.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat") | |
# pipe = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat") | |
# # $ pip install gradio_client fastapi uvicorn | |
# import requests | |
# from PIL import Image | |
# from transformers import pipeline | |
# import io | |
# import base64 | |
# Initialize the pipeline | |
# pipe = pipeline('image-classification') | |
# def load_image_from_path(image_path): | |
# return Image.open(image_path) | |
# def load_image_from_url(image_url): | |
# response = requests.get(image_url) | |
# return Image.open(io.BytesIO(response.content)) | |
# def load_image_from_base64(base64_string): | |
# image_data = base64.b64decode(base64_string) | |
# return Image.open(io.BytesIO(image_data)) | |
# def predict(image_input): | |
# if isinstance(image_input, str): | |
# if image_input.startswith('http'): | |
# image = load_image_from_url(image_input) | |
# elif image_input.startswith('/'): | |
# image = load_image_from_path(image_input) | |
# else: | |
# image = load_image_from_base64(image_input) | |
# elif isinstance(image_input, Image.Image): | |
# image = image_input | |
# else: | |
# raise ValueError("Incorrect format used for image. Should be an URL linking to an image, a base64 string, a local path, or a PIL image.") | |
# return pipe(image) | |
# def predict(image): | |
# return pipe(image) | |
# def main(): | |
# # image_input = 'path_or_url_or_base64' # Update with actual input | |
# # output = predict(image_input) | |
# # print(output) | |
# demo = gr.Interface( | |
# fn=predict, | |
# inputs='image', | |
# outputs='text', | |
# ) | |
# demo.launch() | |
# import requests | |
# import torch | |
# from PIL import Image | |
# from torchvision import transforms | |
# def predict(inp): | |
# inp = Image.fromarray(inp.astype("uint8"), "RGB") | |
# inp = transforms.ToTensor()(inp).unsqueeze(0) | |
# with torch.no_grad(): | |
# prediction = torch.nn.functional.softmax(model(inp.to(device))[0], dim=0) | |
# return {labels[i]: float(prediction[i]) for i in range(1000)} | |
# inputs = gr.Image() | |
# outputs = gr.Label(num_top_classes=3) | |
# io = gr.Interface( | |
# fn=predict, inputs=inputs, outputs=outputs, examples=["dog.jpg"] | |
# ) | |
# io.launch(inline=False, share=True) | |
# if __name__ == "__main__": | |
# main() | |
import gradio as gr | |
from transformers import pipeline | |
pipeline = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat") | |
def predict(image): | |
predictions = pipeline(image) | |
return {p["label"]: p["score"] for p in predictions} | |
gr.Interface( | |
predict, | |
inputs=gr.inputs.Image(label="Upload Image", type="filepath"), | |
outputs=gr.outputs.Label(num_top_classes=2), | |
title="AI Generated? Or Not?", | |
allow_flagging="manual" | |
).launch() | |