Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,76 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
|
3 |
-
# demo = gr.load("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat", src="models")
|
4 |
-
|
5 |
-
# demo.launch()
|
6 |
-
|
7 |
-
###########################33
|
8 |
|
9 |
import gradio as gr
|
10 |
|
11 |
# Use a pipeline as a high-level helper
|
12 |
from transformers import pipeline
|
13 |
|
14 |
-
pipe = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
15 |
# Use a pipeline as a high-level helper
|
16 |
# Load model directly
|
17 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
18 |
|
19 |
-
processor = AutoImageProcessor.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
20 |
-
model = AutoModelForImageClassification.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
|
|
21 |
|
22 |
-
def predict(image):
|
23 |
-
return pipe(image)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
35 |
|
36 |
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
import gradio as gr
|
3 |
|
4 |
# Use a pipeline as a high-level helper
|
5 |
from transformers import pipeline
|
6 |
|
|
|
7 |
# Use a pipeline as a high-level helper
|
8 |
# Load model directly
|
9 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
10 |
|
11 |
+
# processor = AutoImageProcessor.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
12 |
+
# model = AutoModelForImageClassification.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
13 |
+
pipe = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
14 |
|
|
|
|
|
15 |
|
16 |
+
# $ pip install gradio_client fastapi uvicorn
|
17 |
+
|
18 |
+
import requests
|
19 |
+
from PIL import Image
|
20 |
+
from transformers import pipeline
|
21 |
+
import io
|
22 |
+
import base64
|
23 |
|
24 |
+
# Initialize the pipeline
|
25 |
+
# pipe = pipeline('image-classification')
|
26 |
|
27 |
+
def load_image_from_path(image_path):
|
28 |
+
return Image.open(image_path)
|
29 |
+
|
30 |
+
def load_image_from_url(image_url):
|
31 |
+
response = requests.get(image_url)
|
32 |
+
return Image.open(io.BytesIO(response.content))
|
33 |
+
|
34 |
+
def load_image_from_base64(base64_string):
|
35 |
+
image_data = base64.b64decode(base64_string)
|
36 |
+
return Image.open(io.BytesIO(image_data))
|
37 |
+
|
38 |
+
def predict(image_input):
|
39 |
+
if isinstance(image_input, str):
|
40 |
+
if image_input.startswith('http'):
|
41 |
+
image = load_image_from_url(image_input)
|
42 |
+
elif image_input.startswith('/'):
|
43 |
+
image = load_image_from_path(image_input)
|
44 |
+
else:
|
45 |
+
image = load_image_from_base64(image_input)
|
46 |
+
elif isinstance(image_input, Image.Image):
|
47 |
+
image = image_input
|
48 |
+
else:
|
49 |
+
raise ValueError("Incorrect format used for image. Should be an URL linking to an image, a base64 string, a local path, or a PIL image.")
|
50 |
+
|
51 |
+
return pipe(image)
|
52 |
+
|
53 |
+
|
54 |
+
# def predict(image):
|
55 |
+
# return pipe(image)
|
56 |
+
|
57 |
+
def main():
|
58 |
+
# image_input = 'path_or_url_or_base64' # Update with actual input
|
59 |
+
# output = predict(image_input)
|
60 |
+
# print(output)
|
61 |
+
|
62 |
+
demo = gr.Interface(
|
63 |
+
fn=predict,
|
64 |
+
inputs='image',
|
65 |
+
outputs='text',
|
66 |
+
)
|
67 |
+
|
68 |
+
demo.launch()
|
69 |
+
|
70 |
+
|
71 |
|
72 |
+
if __name__ == "__main__":
|
73 |
+
main()
|
74 |
|
75 |
|
76 |
|