AZLABS commited on
Commit
5489ee5
·
verified ·
1 Parent(s): 5595f8a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +159 -198
app.py CHANGED
@@ -6,159 +6,100 @@ from gtts import gTTS
6
  import cv2
7
  import moviepy.editor as mp
8
  import logging
9
- from hercai import Hercai
10
  import uuid
11
  import time
12
  import gradio as gr
13
  import requests
14
-
15
- # Configure detailed logging
16
- log_dir = os.getenv('LOG_DIRECTORY', './') # Get log directory from environment variable, default to current directory
17
- LOGGER_FILE_PATH = os.path.join(str(log_dir), 'utils.log') # Construct the full path to the log file
18
 
19
  logging.basicConfig(
20
  filename=LOGGER_FILE_PATH,
21
- filemode='a', # Append to the log file
22
- format='[%(asctime)s] [%(levelname)s] [%(filename)s] [%(lineno)s:%(funcName)s()] %(message)s', # Log format
23
- datefmt='%Y-%b-%d %H:%M:%S' # Date and time format
24
  )
25
- LOGGER = logging.getLogger(__name__) # Get the logger instance
26
 
27
- log_level_env = os.getenv('LOG_LEVEL', 'INFO') # Get log level from environment variable, default to INFO
28
- log_level_dict = { # Dictionary mapping log level names to their corresponding numerical values
29
  'DEBUG': logging.DEBUG,
30
  'INFO': logging.INFO,
31
  'WARNING': logging.WARNING,
32
  'ERROR': logging.ERROR,
33
  'CRITICAL': logging.CRITICAL
34
  }
35
- # Set the log level based on the environment variable or default to INFO
36
  if log_level_env in log_level_dict:
37
  log_level = log_level_dict[log_level_env]
38
  else:
39
  log_level = log_level_dict['INFO']
40
- LOGGER.setLevel(log_level) # Set the log level for the logger instance
41
 
42
 
43
  class Text2Video:
44
- """
45
- A class to generate videos from text prompts, with detailed logging, model selection, and a user-friendly interface.
46
- """
47
 
48
  def __init__(self) -> None:
49
  """
50
  Initialize the Text2Video class.
 
 
51
  """
52
- LOGGER.info("Initializing Text2Video class")
53
- self.herc = Hercai("") # Replace "" with your actual Hercai API key if you have one
54
- LOGGER.info("Hercai initialized successfully")
 
55
 
56
- def get_image(self, img_prompt: str, image_generator: str, image_model: str) -> str:
57
  """
58
- Generate an image from a text prompt using the selected AI model, with detailed logging and comic book styling.
59
-
60
  Args:
61
- img_prompt (str): The text prompt to generate the image from.
62
- image_generator (str): The name of the AI image generation service (Hercai, Prodia, or Pollinations).
63
- image_model (str): The specific model to use within the selected AI image generation service.
64
-
65
  Returns:
66
- str: The URL of the generated image. Returns an empty string if an error occurred.
67
  """
68
- LOGGER.info(f"Generating image for prompt: {img_prompt}")
69
  try:
70
- # Create a comic book style prompt
71
- modified_prompt = f"Generate a comic book style image with speech bubbles containing the following text: '{img_prompt}'. " \
72
- f"Include elements like vibrant colors, onomatopoeia, and exaggerated expressions to enhance the comic book aesthetic."
73
- # Log the modified prompt
74
- LOGGER.info(f"Modified prompt for {image_generator}: {modified_prompt}")
75
- image_url = ""
76
-
77
- if image_generator == "Hercai":
78
- # Log the selected Hercai model
79
- LOGGER.info(f"Using Hercai model: {image_model}")
80
-
81
- # Generate the image using Hercai
82
- image_result = self.herc.draw_image(model=image_model, prompt=modified_prompt, negative_prompt="Dark and gloomy")
83
- # Extract the image URL from the result
84
- image_url = image_result["url"]
85
-
86
- elif image_generator == "Prodia":
87
- # Log the selected Prodia model
88
- LOGGER.info(f"Using Prodia model: {image_model}")
89
- # Create the Prodia API call
90
- api_url = "https://api.prodia.com/v1/generate"
91
- payload = {
92
- "model": image_model,
93
- "prompt": modified_prompt,
94
- "negative_prompt": "Dark and gloomy"
95
- }
96
- headers = {
97
- "Authorization": "Bearer YOUR_PRODIA_API_KEY" # Replace YOUR_PRODIA_API_KEY with your actual Prodia API key
98
- }
99
- response = requests.post(api_url, json=payload, headers=headers)
100
- if response.status_code == 200:
101
- image_url = response.json()["url"]
102
- # Log the generated image URL
103
- LOGGER.info(f"Image generated successfully using Prodia: {image_url}")
104
- else:
105
- # Log an error if the Prodia API call failed
106
- LOGGER.error(f"Error generating image using Prodia: {response.text}")
107
-
108
- elif image_generator == "Pollinations":
109
- # Log the selected Pollinations model
110
- LOGGER.info(f"Using Pollinations model: {image_model}")
111
- # Implement Pollinations API call here, similar to Prodia
112
- # Replace the following placeholder with your Pollinations API call
113
- # ...
114
-
115
- # Log the generated image URL
116
- LOGGER.info(f"Image generated successfully: {image_url}")
117
  return image_url
118
 
119
  except Exception as e:
120
  # Log any errors encountered during image generation
121
- LOGGER.error(f"Error generating image for prompt '{img_prompt}' using {image_generator}: {e}")
122
  return ""
123
 
124
  def download_img_from_url(self, image_url: str, image_path: str) -> str:
125
  """
126
- Download an image from a URL to a local file path.
127
-
128
  Args:
129
- image_url (str): The URL of the image to download.
130
- image_path (str): The local file path to save the downloaded image.
131
-
132
  Returns:
133
- str: The local file path of the downloaded image. Returns an empty string if an error occurred.
134
  """
135
- LOGGER.info(f"Downloading image from URL: {image_url}")
136
  try:
137
- # Download the image from the URL and save it to the specified path
138
  urllib.request.urlretrieve(image_url, image_path)
139
-
140
- LOGGER.info(f"Image downloaded and saved to: {image_path}")
141
- return image_path
142
 
143
  except Exception as e:
144
  # Log any errors encountered during image download
145
- LOGGER.error(f"Error downloading image from URL '{image_url}': {e}")
146
- return ""
147
 
148
  def text_to_audio(self, img_prompt: str, audio_path: str) -> str:
149
  """
150
- Convert text to speech using gTTS and save it as an audio file.
151
-
152
  Args:
153
- img_prompt (str): The text to convert to speech.
154
- audio_path (str): The local file path to save the generated audio file.
155
-
156
  Returns:
157
- str: The local file path of the saved audio file. Returns an empty string if an error occurred.
158
  """
159
- LOGGER.info(f"Converting text to audio: {img_prompt}")
160
  try:
161
- # Set the language for speech synthesis (English in this case)
162
  language = 'en'
163
 
164
  # Create a gTTS object to convert text to speech
@@ -167,41 +108,36 @@ class Text2Video:
167
  # Save the audio file at the specified path
168
  myobj.save(audio_path)
169
 
170
- LOGGER.info(f"Audio saved to: {audio_path}")
171
  return audio_path
172
  except Exception as e:
 
173
  # Log any errors encountered during text-to-audio conversion
174
- LOGGER.error(f"Error converting text '{img_prompt}' to audio: {e}")
175
  return ""
176
 
177
- def get_images_and_audio(self, list_prompts: list, image_generator: str, image_model: str) -> tuple:
178
  """
179
- Generate images and corresponding audio files for a list of text prompts using the selected AI model.
180
-
181
  Args:
182
- list_prompts (list): A list of text prompts.
183
- image_generator (str): The name of the AI image generation service (Hercai, Prodia, or Pollinations).
184
- image_model (str): The specific model to use within the selected AI image generation service.
185
-
186
  Returns:
187
- tuple: A tuple containing two lists: image paths and audio paths.
188
  """
189
- LOGGER.info("Generating images and audio for prompts")
190
- img_list = [] # List to store image paths
191
- audio_paths = [] # List to store audio paths
192
  for img_prompt in list_prompts:
193
- LOGGER.info(f"Processing prompt: {img_prompt}")
194
  try:
195
- # Generate a unique identifier for the image and audio files
196
  unique_id = uuid.uuid4().hex
197
 
198
  # Construct the image path using the unique identifier
199
  image_path = f"{img_prompt[:9]}_{unique_id}.png"
200
 
201
- # Generate the image URL using the selected AI model
202
- img_url = self.get_image(img_prompt, image_generator, image_model)
203
 
204
- # Download the image from the generated URL
205
  image = self.download_img_from_url(img_url, image_path)
206
 
207
  # Add the image path to the list
@@ -210,159 +146,184 @@ class Text2Video:
210
  # Construct the audio path using the unique identifier
211
  audio_path = f"{img_prompt[:9]}_{unique_id}.mp3"
212
 
213
- # Convert the text to audio and save it
214
  audio = self.text_to_audio(img_prompt, audio_path)
215
 
216
  # Add the audio path to the list
217
  audio_paths.append(audio)
218
 
219
  except Exception as e:
220
- # Log any errors encountered during the process
221
- LOGGER.error(f"Error processing prompt '{img_prompt}': {e}")
222
 
223
- # Return the lists of image paths and audio paths
224
- LOGGER.info("Images and audio generated successfully")
225
  return img_list, audio_paths
226
 
227
  def create_video_from_images_and_audio(self, image_files: list, audio_files: list, output_path: str) -> None:
228
  """
229
- Generate a video from a list of image files and corresponding audio files.
230
-
231
  Args:
232
- image_files (list): A list of local file paths to image files.
233
- audio_files (list): A list of local file paths to audio files.
234
- output_path (str): The local file path where the generated video will be saved.
235
  """
236
- LOGGER.info("Creating video from images and audio")
237
  try:
238
- # Check if the number of images and audio files match
239
  if len(image_files) != len(audio_files):
240
- # Log an error if the number of image files and audio files don't match
241
  LOGGER.error("Error: Number of images doesn't match the number of audio files.")
242
  return
243
 
244
- # Create an empty list to store video clips
245
  video_clips = []
246
 
247
- # Loop through each image file and corresponding audio file
248
  for image_file, audio_file in zip(image_files, audio_files):
249
- LOGGER.info(f"Processing image: {image_file}, audio: {audio_file}")
250
 
251
- # Read the image file using OpenCV
252
  frame = cv2.imread(image_file)
253
 
254
- # Load the audio clip using MoviePy
255
  audio_clip = mp.AudioFileClip(audio_file)
256
 
257
- # Create a video clip from the image and set its duration to the audio clip's duration
258
  video_clip = mp.ImageClip(image_file).set_duration(audio_clip.duration)
259
 
260
- # Set the audio for the video clip
261
  video_clip = video_clip.set_audio(audio_clip)
262
 
263
- # Append the video clip to the list of video clips
264
  video_clips.append(video_clip)
265
 
266
- # Concatenate all the video clips into a single video clip
267
  final_clip = mp.concatenate_videoclips(video_clips)
268
 
269
- # Write the final video clip to a file using the specified output path
270
  final_clip.write_videofile(output_path, codec='libx264', fps=24)
271
-
272
- LOGGER.info(f"Video created successfully at: {output_path}")
273
 
274
  except Exception as e:
275
  # Log any errors encountered during video creation
276
  LOGGER.error(f"Error creating video: {e}")
277
 
278
- def generate_video(self, text: str, image_generator: str, image_model: str) -> str:
279
  """
280
- Generate a video from a comma-separated string of text prompts using the selected AI model.
281
-
282
  Args:
283
- text (str): A comma-separated string of text prompts, where each prompt represents a scene or frame in the video.
284
- image_generator (str): The name of the AI image generation service (Hercai, Prodia, or Pollinations).
285
- image_model (str): The specific model to use within the selected AI image generation service.
286
-
287
- Returns:
288
- str: The file path of the generated video file. Returns an empty string if an error occurred.
289
  """
290
- LOGGER.info("Generating video from text")
291
  try:
292
- # Split the input text into a list of prompts
293
  list_prompts = [sentence.strip() for sentence in text.split(",,") if sentence.strip()]
294
- LOGGER.info(f"Prompts extracted from text: {list_prompts}")
295
 
296
- # Define the output path for the generated video
297
- output_path = "output_video.mp4"
298
 
299
- # Generate images and corresponding audio files for each prompt using the selected AI model
300
- img_list, audio_paths = self.get_images_and_audio(list_prompts, image_generator, image_model)
301
 
302
- # Create the video from the generated images and audio files
303
  self.create_video_from_images_and_audio(img_list, audio_paths, output_path)
304
 
305
- LOGGER.info(f"Video generated successfully: {output_path}")
306
  return output_path
307
-
308
  except Exception as e:
 
309
  # Log any errors encountered during video generation
310
- LOGGER.error(f"Error generating video from text '{text}': {e}")
311
- return ""
312
 
313
  def gradio_interface(self):
314
- """
315
- Creates a user-friendly Gradio interface for the video generation application.
316
- """
317
- LOGGER.info("Launching Gradio interface")
318
- with gr.Blocks(css="style.css", theme='abidlabs/dracula_revamped') as demo:
319
- # Set the title of the application
320
- gr.HTML("""
321
- <center><h1 style="color:#fff">Comics Video Generator</h1></center>""")
322
 
323
- # Create a text box for user input, allowing them to enter comic book text
324
- with gr.Row(elem_id="col-container"):
325
- input_text = gr.Textbox(label="Comics Text",
326
- placeholder="Enter the comics text, separating scenes with double commas (,,)")
327
 
328
- # Create a dropdown menu for selecting the AI image generation service
329
- with gr.Row(elem_id="col-container"):
330
- image_generator = gr.Dropdown(label="Image Generator",
331
- choices=["Hercai", "Prodia", "Pollinations"],
332
- value="Hercai",
333
- interactive=True)
334
 
335
- # Create a dropdown menu for selecting the specific model within the chosen service
336
  with gr.Row(elem_id="col-container"):
337
- image_model = gr.Dropdown(label="Image Model",
338
- choices=["v1", "v2", "v3", "simurg", "animefy", "raava", "shonin"],
339
- value="v3",
340
- interactive=True)
341
 
342
- # Create a button that triggers the video generation process
343
  with gr.Row(elem_id="col-container"):
344
  button = gr.Button("Generate Video")
345
 
346
- # Create a component to display the generated video
347
  with gr.Row(elem_id="col-container"):
348
  output = gr.PlayableVideo()
349
 
350
- # Provide an example to guide users on how to format their input
351
  with gr.Row(elem_id="col-container"):
352
- example_txt = """Once upon a time there was a village. It was a nice place to live, except for one thing. People did not like to share.,,
353
- One day a visitor came to town. 'Hello. Does anybody have food to share?' He asked. 'No', said everyone.,,
354
- 'That's okay', said the visitor. 'I will make stone soup for everyone'. Then he took a stone and dropped it into a giant pot,,"""
355
  example = gr.Examples([example_txt], input_text)
356
 
357
- # Define the button's click event to call the generate_video function with the user's input and model selection
358
- button.click(self.generate_video, [input_text, image_generator, image_model], output)
359
-
360
- LOGGER.info("Gradio interface launched successfully")
361
- # Launch the Gradio interface
362
  demo.launch(debug=True)
363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364
 
365
  if __name__ == "__main__":
366
- LOGGER.info("Starting application")
367
- text2video = Text2Video() # Create an instance of the Text2Video class
368
- text2video.gradio_interface() # Launch the Gradio interface
 
6
  import cv2
7
  import moviepy.editor as mp
8
  import logging
 
9
  import uuid
10
  import time
11
  import gradio as gr
12
  import requests
13
+ from random import randint
14
+ # Configure logging
15
+ log_dir = os.getenv('LOG_DIRECTORY', './')
16
+ LOGGER_FILE_PATH = os.path.join(str(log_dir), 'utils.log')
17
 
18
  logging.basicConfig(
19
  filename=LOGGER_FILE_PATH,
20
+ filemode='a',
21
+ format='[%(asctime)s] [%(levelname)s] [%(filename)s] [%(lineno)s:%(funcName)s()] %(message)s',
22
+ datefmt='%Y-%b-%d %H:%M:%S'
23
  )
24
+ LOGGER = logging.getLogger(__name__)
25
 
26
+ log_level_env = os.getenv('LOG_LEVEL', 'INFO')
27
+ log_level_dict = {
28
  'DEBUG': logging.DEBUG,
29
  'INFO': logging.INFO,
30
  'WARNING': logging.WARNING,
31
  'ERROR': logging.ERROR,
32
  'CRITICAL': logging.CRITICAL
33
  }
 
34
  if log_level_env in log_level_dict:
35
  log_level = log_level_dict[log_level_env]
36
  else:
37
  log_level = log_level_dict['INFO']
38
+ LOGGER.setLevel(log_level)
39
 
40
 
41
  class Text2Video:
42
+ """A class to generate videos from text prompts."""
 
 
43
 
44
  def __init__(self) -> None:
45
  """
46
  Initialize the Text2Video class.
47
+ Args:
48
+ file_path (str): Path to the configuration file.
49
  """
50
+ # Replace Azure OpenAI with Hercai
51
+ self.hercai = Hercai("") # Replace "" with your Hercai API key if you have one
52
+ self.prodia_model = "stable-diffusion-xl"
53
+ self.pollinations_model = None
54
 
55
+ def get_image(self, img_prompt: str) -> str:
56
  """
57
+ Generate an image based on the provided text prompt using Hercai's draw_image method.
 
58
  Args:
59
+ img_prompt (str): Text prompt for generating the image.
 
 
 
60
  Returns:
61
+ str: URL of the generated image.
62
  """
 
63
  try:
64
+ # Generate image using Hercai's draw_image method
65
+ image_result = self.hercai.draw_image(model="v3", prompt=img_prompt, negative_prompt="")
66
+ image_url = image_result["url"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  return image_url
68
 
69
  except Exception as e:
70
  # Log any errors encountered during image generation
71
+ LOGGER.error(f"Error generating image: {e}")
72
  return ""
73
 
74
  def download_img_from_url(self, image_url: str, image_path: str) -> str:
75
  """
76
+ Download an image from a URL.
 
77
  Args:
78
+ image_url (str): URL of the image to download.
79
+ image_path (str): Path to save the downloaded image.
 
80
  Returns:
81
+ str: Path of the downloaded image.
82
  """
 
83
  try:
84
+ # Download the image from the provided URL and save it to the specified path
85
  urllib.request.urlretrieve(image_url, image_path)
86
+ return image_path # Return the path of the downloaded image if successful
 
 
87
 
88
  except Exception as e:
89
  # Log any errors encountered during image download
90
+ LOGGER.error(f"Error downloading image from URL: {e}")
91
+ return "" # Return an empty string if an error occurs
92
 
93
  def text_to_audio(self, img_prompt: str, audio_path: str) -> str:
94
  """
95
+ Convert text to speech and save it as an audio file.
 
96
  Args:
97
+ img_prompt (str): Text to convert to speech.
98
+ audio_path (str): Path to save the audio file.
 
99
  Returns:
100
+ str: Path of the saved audio file.
101
  """
 
102
  try:
 
103
  language = 'en'
104
 
105
  # Create a gTTS object to convert text to speech
 
108
  # Save the audio file at the specified path
109
  myobj.save(audio_path)
110
 
111
+ # Return the path of the saved audio file if successful
112
  return audio_path
113
  except Exception as e:
114
+
115
  # Log any errors encountered during text-to-audio conversion
116
+ LOGGER.error(f"Error converting text to audio: {e}")
117
  return ""
118
 
119
+ def get_images_and_audio(self, list_prompts: list) -> tuple:
120
  """
121
+ Generate images and corresponding audio files from a list of prompts.
 
122
  Args:
123
+ list_prompts (list): List of text prompts.
 
 
 
124
  Returns:
125
+ tuple: A tuple containing lists of image paths and audio paths.
126
  """
127
+ img_list = [] # Initialize an empty list to store image paths
128
+ audio_paths = [] # Initialize an empty list to store audio paths
 
129
  for img_prompt in list_prompts:
 
130
  try:
131
+ # Generate a unique identifier for this file
132
  unique_id = uuid.uuid4().hex
133
 
134
  # Construct the image path using the unique identifier
135
  image_path = f"{img_prompt[:9]}_{unique_id}.png"
136
 
137
+ # Generate image URL based on the prompt
138
+ img_url = self.get_image(img_prompt)
139
 
140
+ # Download and save the image
141
  image = self.download_img_from_url(img_url, image_path)
142
 
143
  # Add the image path to the list
 
146
  # Construct the audio path using the unique identifier
147
  audio_path = f"{img_prompt[:9]}_{unique_id}.mp3"
148
 
149
+ # Convert text to audio and save it
150
  audio = self.text_to_audio(img_prompt, audio_path)
151
 
152
  # Add the audio path to the list
153
  audio_paths.append(audio)
154
 
155
  except Exception as e:
156
+ LOGGER.error(f"Error processing prompt: {img_prompt}, {e}")
 
157
 
158
+ # Return lists of image paths and audio paths as a tuple
 
159
  return img_list, audio_paths
160
 
161
  def create_video_from_images_and_audio(self, image_files: list, audio_files: list, output_path: str) -> None:
162
  """
163
+ Create a video from images and corresponding audio files.
 
164
  Args:
165
+ image_files (list): List of image files.
166
+ audio_files (list): List of audio files.
167
+ output_path (str): Path to save the output video file.
168
  """
 
169
  try:
170
+ # Check if the number of images matches the number of audio files
171
  if len(image_files) != len(audio_files):
 
172
  LOGGER.error("Error: Number of images doesn't match the number of audio files.")
173
  return
174
 
175
+ # Initialize an empty list to store video clips
176
  video_clips = []
177
 
 
178
  for image_file, audio_file in zip(image_files, audio_files):
 
179
 
180
+ # Read the image frame
181
  frame = cv2.imread(image_file)
182
 
183
+ # Load the audio clip
184
  audio_clip = mp.AudioFileClip(audio_file)
185
 
186
+ # Create video clip with image
187
  video_clip = mp.ImageClip(image_file).set_duration(audio_clip.duration)
188
 
189
+ # Set audio for the video clip
190
  video_clip = video_clip.set_audio(audio_clip)
191
 
192
+ # Append the video clip to the list
193
  video_clips.append(video_clip)
194
 
195
+ # Concatenate all video clips into a single clip
196
  final_clip = mp.concatenate_videoclips(video_clips)
197
 
198
+ # Write the final video to the output path
199
  final_clip.write_videofile(output_path, codec='libx264', fps=24)
200
+ print("Video created successfully.")
 
201
 
202
  except Exception as e:
203
  # Log any errors encountered during video creation
204
  LOGGER.error(f"Error creating video: {e}")
205
 
206
+ def generate_video(self, text: list) -> None:
207
  """
208
+ Generate a video from a list of text prompts.
 
209
  Args:
210
+ list_prompts (list): List of text prompts.
 
 
 
 
 
211
  """
 
212
  try:
 
213
  list_prompts = [sentence.strip() for sentence in text.split(",,") if sentence.strip()]
 
214
 
215
+ # Set the output path for the generated video
216
+ output_path = "output_video1.mp4"
217
 
218
+ # Generate images and corresponding audio files
219
+ img_list, audio_paths = self.get_images_and_audio(list_prompts)
220
 
221
+ # Create video from images and audio
222
  self.create_video_from_images_and_audio(img_list, audio_paths, output_path)
223
 
 
224
  return output_path
 
225
  except Exception as e:
226
+
227
  # Log any errors encountered during video generation
228
+ LOGGER.error(f"Error generating video: {e}")
 
229
 
230
  def gradio_interface(self):
 
 
 
 
 
 
 
 
231
 
232
+ with gr.Blocks(css="style.css", theme='abidlabs/dracula_revamped') as demo:
233
+ example_txt = """once upon a time there was a village. It was a nice place to live, except for one thing. people did not like to share.,, One day a visitor came to town.
234
+ 'Hello. Does anybody have food to share?' He asked. 'No', said everyone.,,
235
+ That's okay', said the visitor. 'I will make stone soup for everyone'.Then he took a stone and dropped it into a giant pot,,"""
236
 
237
+ gr.HTML("""
238
+ <center><h1 style="color:#fff">Comics Video Generator</h1></center>""")
 
 
 
 
239
 
 
240
  with gr.Row(elem_id="col-container"):
241
+ input_text = gr.Textbox(label="Comics Text", placeholder="Enter the comics by double comma separated")
 
 
 
242
 
 
243
  with gr.Row(elem_id="col-container"):
244
  button = gr.Button("Generate Video")
245
 
 
246
  with gr.Row(elem_id="col-container"):
247
  output = gr.PlayableVideo()
248
 
 
249
  with gr.Row(elem_id="col-container"):
 
 
 
250
  example = gr.Examples([example_txt], input_text)
251
 
252
+ button.click(self.generate_video, [input_text], output)
 
 
 
 
253
  demo.launch(debug=True)
254
 
255
+ # --- Prodia & Pollinations Methods ---
256
+ def prodia_generate(self, model, prompt, output_file="prodia_output.png"):
257
+ s = requests.Session()
258
+ headers = {"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)"}
259
+
260
+ resp = s.get(
261
+ "https://api.prodia.com/generate",
262
+ params={
263
+ "new": "true", "prompt": prompt, "model": model,
264
+ "negative_prompt": "verybadimagenegative_v1.3",
265
+ "steps": "20", "cfg": "7", "seed": randint(1, 10000),
266
+ "sample": "DPM++ 2M Karras", "aspect_ratio": "square"
267
+ },
268
+ headers=headers
269
+ )
270
+
271
+ job_id = resp.json()['job']
272
+ while True:
273
+ time.sleep(5)
274
+ status = s.get(f"https://api.prodia.com/job/{job_id}", headers=headers).json()
275
+ if status["status"] == "succeeded":
276
+ img_data = s.get(f"https://images.prodia.xyz/{job_id}.png?download=1", headers=headers).content
277
+ with open(output_file, 'wb') as f:
278
+ f.write(img_data)
279
+ return output_file
280
+ return None
281
+
282
+ def pollinations_generate(self, prompt, output_file="pollinations_output.png"):
283
+ response = requests.get(f"https://image.pollinations.ai/prompt/{prompt}{randint(1, 10000)}")
284
+ if response.status_code == 200:
285
+ with open(output_file, 'wb') as f:
286
+ f.write(response.content)
287
+ return output_file
288
+ return None
289
+
290
+ # --- Hercai Class ---
291
+ class Hercai:
292
+ def __init__(self, api_key=None):
293
+ self.api_key = api_key
294
+
295
+ def question(self, model="v3", content="", personality=None):
296
+ url = f"https://hercai.onrender.com/v3/hercai?question={content}&model={model}"
297
+ if personality:
298
+ url += f"&personality={personality}"
299
+ if self.api_key:
300
+ url += f"&key={self.api_key}"
301
+ response = requests.get(url)
302
+ return response.json()
303
+
304
+ def draw_image(self, model="v3", prompt="", negative_prompt=""):
305
+ url = f"https://hercai.onrender.com/v3/text2image?prompt={prompt}&model={model}&negative_prompt={negative_prompt}"
306
+ if self.api_key:
307
+ url += f"&key={self.api_key}"
308
+ response = requests.get(url)
309
+ return response.json()
310
+
311
+ def beta_question(self, model="v3", content="", personality=None):
312
+ url = f"https://hercai.onrender.com/beta/hercai?question={content}&model={model}"
313
+ if personality:
314
+ url += f"&personality={personality}"
315
+ if self.api_key:
316
+ url += f"&key={self.api_key}"
317
+ response = requests.get(url)
318
+ return response.json()
319
+
320
+ def beta_draw_image(self, model="v3", prompt="", negative_prompt=""):
321
+ url = f"https://hercai.onrender.com/beta/text2image?prompt={prompt}&model={model}&negative_prompt={negative_prompt}"
322
+ if self.api_key:
323
+ url += f"&key={self.api_key}"
324
+ response = requests.get(url)
325
+ return response.json()
326
 
327
  if __name__ == "__main__":
328
+ text2video = Text2Video()
329
+ text2video.gradio_interface()