Spaces:
Runtime error
Runtime error
Commit
·
7eaa9e0
1
Parent(s):
2ec9cfb
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.chains.question_answering import load_qa_chain
|
9 |
+
from langchain.llms import OpenAI
|
10 |
+
from langchain.callbacks import get_openai_callback
|
11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
+
from langchain import HuggingFaceHub, LLMChain
|
13 |
+
from langchain.embeddings import HuggingFaceHubEmbeddings
|
14 |
+
token = os.environ['HF_TOKEN']
|
15 |
+
repo_id = "sentence-transformers/all-mpnet-base-v2"
|
16 |
+
hf = HuggingFaceHubEmbeddings(
|
17 |
+
repo_id=repo_id,
|
18 |
+
task="feature-extraction",
|
19 |
+
huggingfacehub_api_token= token,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
def main():
|
26 |
+
load_dotenv()
|
27 |
+
st.set_page_config(page_title="Ask your PDF")
|
28 |
+
st.header("Ask your PDF 💬")
|
29 |
+
|
30 |
+
# upload file
|
31 |
+
pdf = st.file_uploader("Upload your PDF", type="pdf")
|
32 |
+
|
33 |
+
# extract the text
|
34 |
+
if pdf is not None:
|
35 |
+
pdf_reader = PdfReader(pdf)
|
36 |
+
text = ""
|
37 |
+
for page in pdf_reader.pages:
|
38 |
+
text += page.extract_text()
|
39 |
+
|
40 |
+
# split into chunks
|
41 |
+
text_splitter = CharacterTextSplitter(
|
42 |
+
separator="\n",
|
43 |
+
chunk_size=1000,
|
44 |
+
chunk_overlap=200,
|
45 |
+
length_function=len
|
46 |
+
)
|
47 |
+
chunks = text_splitter.split_text(text)
|
48 |
+
|
49 |
+
# create embeddings
|
50 |
+
# embeddings = OpenAIEmbeddings()
|
51 |
+
# embeddings = query(chunks)
|
52 |
+
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
53 |
+
embeddings = hf
|
54 |
+
knowledge_base = FAISS.from_texts(chunks, embeddings)
|
55 |
+
|
56 |
+
# show user input
|
57 |
+
user_question = st.text_input("Ask a question about your PDF:")
|
58 |
+
if user_question:
|
59 |
+
docs = knowledge_base.similarity_search(user_question)
|
60 |
+
|
61 |
+
# llm = OpenAI()
|
62 |
+
|
63 |
+
hub_llm = HuggingFaceHub(
|
64 |
+
repo_id='HuggingFaceH4/zephyr-7b-beta',
|
65 |
+
model_kwargs={'temperature':0.01,"max_length": 2048,},
|
66 |
+
huggingfacehub_api_token=token)
|
67 |
+
llm = hub_llm
|
68 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
69 |
+
with get_openai_callback() as cb:
|
70 |
+
response = chain.run(input_documents=docs, question=user_question)
|
71 |
+
print(cb)
|
72 |
+
|
73 |
+
st.write(response)
|
74 |
+
|
75 |
+
|
76 |
+
if __name__ == '__main__':
|
77 |
+
main()
|