Aalaa's picture
Update app.py
f75df71
raw
history blame
2 kB
import gradio as gr
import yolov7
import subprocess
import tempfile
import time
from pathlib import Path
import uuid
import cv2
import gradio as gr
def image_fn(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv7 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
model.conf = conf_threshold
model.iou = iou_threshold
results = model([image], size=image_size)
return results.render()[0]
image_interface = gr.Interface(
fn=image_fn,
inputs=[
gr.inputs.Image(type="pil", label="Input Image"),
gr.inputs.Dropdown(
choices=[
"Aalaa/Yolov7_Visual_Pollution_Detection",
],
default="Aalaa/Yolov7_Visual_Pollution_Detection",
label="Model",
)
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
],
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
#title="Visual P",
#examples=[['image1.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45], ['image2.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45], ['image3.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45]],
#cache_examples=True,
#theme='huggingface',
)
if __name__ == "__main__":
gr.TabbedInterface(
[image_interface],
["Run on Images"],
).launch()