Aalaa commited on
Commit
2678bfa
·
verified ·
1 Parent(s): a59c2a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -28
app.py CHANGED
@@ -1,11 +1,22 @@
1
  import gradio as gr
2
  import yolov7
 
3
  import tempfile
4
- import cv2
5
- import numpy as np
6
  from pathlib import Path
 
 
 
7
 
8
- def image_fn(image, model_path, image_size, conf_threshold, iou_threshold):
 
 
 
 
 
 
 
 
9
  """
10
  YOLOv7 inference function
11
  Args:
@@ -17,44 +28,42 @@ def image_fn(image, model_path, image_size, conf_threshold, iou_threshold):
17
  Returns:
18
  Rendered image
19
  """
 
20
  model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
21
  model.conf = conf_threshold
22
  model.iou = iou_threshold
23
  results = model([image], size=image_size)
24
-
25
- # Convert PIL image to NumPy array if necessary
26
- if isinstance(results.render()[0], np.ndarray):
27
- img = results.render()[0]
28
- else:
29
- img = np.array(results.render()[0])
30
-
31
- # Ensure the image array is writable
32
- img.flags.writeable = True
33
-
34
- return img
35
 
36
- # Use gr instead of gr.inputs and gr.outputs
37
  image_interface = gr.Interface(
38
  fn=image_fn,
39
  inputs=[
40
- gr.Image(type="pil", label="Input Image"),
41
- gr.Dropdown(
42
- choices=["Aalaa/Yolov7_Visual_Pollution_Detection"],
43
- value="Aalaa/Yolov7_Visual_Pollution_Detection",
44
- label="Model"
45
- ),
46
- gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"),
47
- gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"),
48
- gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold")
49
- ],
50
- outputs=gr.Image(type="numpy", label="Output Image"),
 
 
 
51
  examples=[['image1.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45]],
52
  cache_examples=True,
53
- theme='default'
54
  )
55
 
 
 
56
  if __name__ == "__main__":
57
  gr.TabbedInterface(
58
  [image_interface],
59
  ["Run on Images"],
60
- ).launch()
 
1
  import gradio as gr
2
  import yolov7
3
+ import subprocess
4
  import tempfile
5
+ import time
 
6
  from pathlib import Path
7
+ import uuid
8
+ import cv2
9
+ import gradio as gr
10
 
11
+
12
+
13
+ def image_fn(
14
+ image: gr.inputs.Image = None,
15
+ model_path: gr.inputs.Dropdown = None,
16
+ image_size: gr.inputs.Slider = 640,
17
+ conf_threshold: gr.inputs.Slider = 0.25,
18
+ iou_threshold: gr.inputs.Slider = 0.45,
19
+ ):
20
  """
21
  YOLOv7 inference function
22
  Args:
 
28
  Returns:
29
  Rendered image
30
  """
31
+
32
  model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
33
  model.conf = conf_threshold
34
  model.iou = iou_threshold
35
  results = model([image], size=image_size)
36
+ return results.render()[0]
37
+
38
+
39
+
 
 
 
 
 
 
 
40
 
 
41
  image_interface = gr.Interface(
42
  fn=image_fn,
43
  inputs=[
44
+ gr.inputs.Image(type="numpy", label="Input Image"),
45
+ gr.inputs.Dropdown(
46
+ choices=[
47
+ "Aalaa/Yolov7_Visual_Pollution_Detection",
48
+ ],
49
+ default="Aalaa/Yolov7_Visual_Pollution_Detection",
50
+ label="Model",
51
+ )
52
+ #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
53
+ #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
54
+ #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
55
+ ],
56
+ outputs=gr.outputs.Image(type="filepath", label="Output Image"),
57
+
58
  examples=[['image1.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45]],
59
  cache_examples=True,
60
+ theme='huggingface',
61
  )
62
 
63
+
64
+
65
  if __name__ == "__main__":
66
  gr.TabbedInterface(
67
  [image_interface],
68
  ["Run on Images"],
69
+ ).launch()