Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import yolov7
|
3 |
+
import subprocess
|
4 |
+
import tempfile
|
5 |
+
import time
|
6 |
+
from pathlib import Path
|
7 |
+
import uuid
|
8 |
+
import cv2
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def image_fn(
|
14 |
+
image: gr.inputs.Image = None,
|
15 |
+
model_path: gr.inputs.Dropdown = None,
|
16 |
+
image_size: gr.inputs.Slider = 640,
|
17 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
18 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
19 |
+
):
|
20 |
+
"""
|
21 |
+
YOLOv7 inference function
|
22 |
+
Args:
|
23 |
+
image: Input image
|
24 |
+
model_path: Path to the model
|
25 |
+
image_size: Image size
|
26 |
+
conf_threshold: Confidence threshold
|
27 |
+
iou_threshold: IOU threshold
|
28 |
+
Returns:
|
29 |
+
Rendered image
|
30 |
+
"""
|
31 |
+
|
32 |
+
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
|
33 |
+
model.conf = conf_threshold
|
34 |
+
model.iou = iou_threshold
|
35 |
+
results = model([image], size=image_size)
|
36 |
+
return results.render()[0]
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
|
41 |
+
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
|
42 |
+
start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
|
43 |
+
end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
|
44 |
+
|
45 |
+
suffix = Path(video_file).suffix
|
46 |
+
|
47 |
+
clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
|
48 |
+
subprocess.call(
|
49 |
+
f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
|
50 |
+
)
|
51 |
+
|
52 |
+
# Reader of clip file
|
53 |
+
cap = cv2.VideoCapture(clip_temp_file.name)
|
54 |
+
|
55 |
+
# This is an intermediary temp file where we'll write the video to
|
56 |
+
# Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
|
57 |
+
# with ffmpeg at the end of the function here.
|
58 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
|
59 |
+
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
|
60 |
+
|
61 |
+
num_frames = 0
|
62 |
+
max_frames = duration * 30
|
63 |
+
while cap.isOpened():
|
64 |
+
try:
|
65 |
+
ret, frame = cap.read()
|
66 |
+
if not ret:
|
67 |
+
break
|
68 |
+
except Exception as e:
|
69 |
+
print(e)
|
70 |
+
continue
|
71 |
+
print("FRAME DTYPE", type(frame))
|
72 |
+
out.write(model([frame], conf_thres, iou_thres))
|
73 |
+
num_frames += 1
|
74 |
+
print("Processed {} frames".format(num_frames))
|
75 |
+
if num_frames == max_frames:
|
76 |
+
break
|
77 |
+
|
78 |
+
out.release()
|
79 |
+
|
80 |
+
# Aforementioned hackiness
|
81 |
+
out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
|
82 |
+
subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
|
83 |
+
|
84 |
+
return out_file.name
|
85 |
+
|
86 |
+
image_interface = gr.Interface(
|
87 |
+
fn=image_fn,
|
88 |
+
inputs=[
|
89 |
+
gr.inputs.Image(type="pil", label="Input Image"),
|
90 |
+
gr.inputs.Dropdown(
|
91 |
+
choices=[
|
92 |
+
"Aalaa/Yolov7_Visual_Pollution_Detection",
|
93 |
+
],
|
94 |
+
default="Aalaa/Yolov7_Visual_Pollution_Detection",
|
95 |
+
label="Model",
|
96 |
+
)
|
97 |
+
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
|
98 |
+
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
99 |
+
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
100 |
+
],
|
101 |
+
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
102 |
+
title="Smart Environmental Eye (SEE)",
|
103 |
+
examples=[['image1.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45], ['image2.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45], ['image3.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45]],
|
104 |
+
cache_examples=True,
|
105 |
+
theme='huggingface',
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
video_interface = gr.Interface(
|
110 |
+
fn=video_fn,
|
111 |
+
inputs=[
|
112 |
+
gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
|
113 |
+
gr.inputs.Dropdown(
|
114 |
+
choices=[
|
115 |
+
"Aalaa/Yolov7_Visual_Pollution_Detection",
|
116 |
+
],
|
117 |
+
default="Aalaa/Yolov7_Visual_Pollution_Detection",
|
118 |
+
label="Model",
|
119 |
+
),
|
120 |
+
],
|
121 |
+
outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
|
122 |
+
# examples=[
|
123 |
+
# ["video.mp4", 0.25, 0.45, 0, 2],
|
124 |
+
|
125 |
+
# ],
|
126 |
+
title="Smart Environmental Eye (SEE)",
|
127 |
+
cache_examples=True,
|
128 |
+
theme='huggingface',
|
129 |
+
|
130 |
+
)
|
131 |
+
|
132 |
+
if __name__ == "__main__":
|
133 |
+
gr.TabbedInterface(
|
134 |
+
[image_interface, video_interface],
|
135 |
+
["Run on Images", "Run on Videos"],
|
136 |
+
).launch()
|