Aalaa commited on
Commit
6eb284a
·
1 Parent(s): eb4aed6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +136 -0
app.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import yolov7
3
+ import subprocess
4
+ import tempfile
5
+ import time
6
+ from pathlib import Path
7
+ import uuid
8
+ import cv2
9
+ import gradio as gr
10
+
11
+
12
+
13
+ def image_fn(
14
+ image: gr.inputs.Image = None,
15
+ model_path: gr.inputs.Dropdown = None,
16
+ image_size: gr.inputs.Slider = 640,
17
+ conf_threshold: gr.inputs.Slider = 0.25,
18
+ iou_threshold: gr.inputs.Slider = 0.45,
19
+ ):
20
+ """
21
+ YOLOv7 inference function
22
+ Args:
23
+ image: Input image
24
+ model_path: Path to the model
25
+ image_size: Image size
26
+ conf_threshold: Confidence threshold
27
+ iou_threshold: IOU threshold
28
+ Returns:
29
+ Rendered image
30
+ """
31
+
32
+ model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
33
+ model.conf = conf_threshold
34
+ model.iou = iou_threshold
35
+ results = model([image], size=image_size)
36
+ return results.render()[0]
37
+
38
+
39
+
40
+ def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
41
+ model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
42
+ start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
43
+ end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
44
+
45
+ suffix = Path(video_file).suffix
46
+
47
+ clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
48
+ subprocess.call(
49
+ f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
50
+ )
51
+
52
+ # Reader of clip file
53
+ cap = cv2.VideoCapture(clip_temp_file.name)
54
+
55
+ # This is an intermediary temp file where we'll write the video to
56
+ # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
57
+ # with ffmpeg at the end of the function here.
58
+ with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
59
+ out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
60
+
61
+ num_frames = 0
62
+ max_frames = duration * 30
63
+ while cap.isOpened():
64
+ try:
65
+ ret, frame = cap.read()
66
+ if not ret:
67
+ break
68
+ except Exception as e:
69
+ print(e)
70
+ continue
71
+ print("FRAME DTYPE", type(frame))
72
+ out.write(model([frame], conf_thres, iou_thres))
73
+ num_frames += 1
74
+ print("Processed {} frames".format(num_frames))
75
+ if num_frames == max_frames:
76
+ break
77
+
78
+ out.release()
79
+
80
+ # Aforementioned hackiness
81
+ out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
82
+ subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
83
+
84
+ return out_file.name
85
+
86
+ image_interface = gr.Interface(
87
+ fn=image_fn,
88
+ inputs=[
89
+ gr.inputs.Image(type="pil", label="Input Image"),
90
+ gr.inputs.Dropdown(
91
+ choices=[
92
+ "Aalaa/Yolov7_Visual_Pollution_Detection",
93
+ ],
94
+ default="Aalaa/Yolov7_Visual_Pollution_Detection",
95
+ label="Model",
96
+ )
97
+ #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
98
+ #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
99
+ #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
100
+ ],
101
+ outputs=gr.outputs.Image(type="filepath", label="Output Image"),
102
+ title="Smart Environmental Eye (SEE)",
103
+ examples=[['image1.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45], ['image2.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45], ['image3.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45]],
104
+ cache_examples=True,
105
+ theme='huggingface',
106
+ )
107
+
108
+
109
+ video_interface = gr.Interface(
110
+ fn=video_fn,
111
+ inputs=[
112
+ gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
113
+ gr.inputs.Dropdown(
114
+ choices=[
115
+ "Aalaa/Yolov7_Visual_Pollution_Detection",
116
+ ],
117
+ default="Aalaa/Yolov7_Visual_Pollution_Detection",
118
+ label="Model",
119
+ ),
120
+ ],
121
+ outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
122
+ # examples=[
123
+ # ["video.mp4", 0.25, 0.45, 0, 2],
124
+
125
+ # ],
126
+ title="Smart Environmental Eye (SEE)",
127
+ cache_examples=True,
128
+ theme='huggingface',
129
+
130
+ )
131
+
132
+ if __name__ == "__main__":
133
+ gr.TabbedInterface(
134
+ [image_interface, video_interface],
135
+ ["Run on Images", "Run on Videos"],
136
+ ).launch()