Aalaa commited on
Commit
acef6ac
·
verified ·
1 Parent(s): 0bfb000

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -5
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import gradio as gr
 
2
  import yolov7
3
  import subprocess
4
  import tempfile
@@ -9,6 +10,12 @@ import cv2
9
  import gradio as gr
10
 
11
 
 
 
 
 
 
 
12
 
13
  def image_fn(
14
  image: gr.inputs.Image = None,
@@ -37,6 +44,51 @@ def image_fn(
37
 
38
 
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  image_interface = gr.Interface(
42
  fn=image_fn,
@@ -45,6 +97,7 @@ image_interface = gr.Interface(
45
  gr.inputs.Dropdown(
46
  choices=[
47
  "Aalaa/Yolov7_Visual_Pollution_Detection",
 
48
  ],
49
  default="Aalaa/Yolov7_Visual_Pollution_Detection",
50
  label="Model",
@@ -54,16 +107,39 @@ image_interface = gr.Interface(
54
  #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
55
  ],
56
  outputs=gr.outputs.Image(type="filepath", label="Output Image"),
57
-
58
- examples=[['image1.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45]],
59
  cache_examples=True,
60
  theme='huggingface',
61
  )
62
 
63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  if __name__ == "__main__":
66
  gr.TabbedInterface(
67
- [image_interface],
68
- ["Run on Images"],
69
- ).launch()
 
1
  import gradio as gr
2
+ #import torch
3
  import yolov7
4
  import subprocess
5
  import tempfile
 
10
  import gradio as gr
11
 
12
 
13
+
14
+ # # Images
15
+ # #torch.hub.download_url_t
16
+ # o_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
17
+ # #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
18
+
19
 
20
  def image_fn(
21
  image: gr.inputs.Image = None,
 
44
 
45
 
46
 
47
+ def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
48
+ model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
49
+ start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
50
+ end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
51
+
52
+ suffix = Path(video_file).suffix
53
+
54
+ clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
55
+ subprocess.call(
56
+ f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
57
+ )
58
+
59
+ # Reader of clip file
60
+ cap = cv2.VideoCapture(clip_temp_file.name)
61
+
62
+ # This is an intermediary temp file where we'll write the video to
63
+ # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
64
+ # with ffmpeg at the end of the function here.
65
+ with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
66
+ out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
67
+
68
+ num_frames = 0
69
+ max_frames = duration * 30
70
+ while cap.isOpened():
71
+ try:
72
+ ret, frame = cap.read()
73
+ if not ret:
74
+ break
75
+ except Exception as e:
76
+ print(e)
77
+ continue
78
+ print("FRAME DTYPE", type(frame))
79
+ out.write(model([frame], conf_thres, iou_thres))
80
+ num_frames += 1
81
+ print("Processed {} frames".format(num_frames))
82
+ if num_frames == max_frames:
83
+ break
84
+
85
+ out.release()
86
+
87
+ # Aforementioned hackiness
88
+ out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
89
+ subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
90
+
91
+ return out_file.name
92
 
93
  image_interface = gr.Interface(
94
  fn=image_fn,
 
97
  gr.inputs.Dropdown(
98
  choices=[
99
  "Aalaa/Yolov7_Visual_Pollution_Detection",
100
+ #"kadirnar/yolov7-v0.1",
101
  ],
102
  default="Aalaa/Yolov7_Visual_Pollution_Detection",
103
  label="Model",
 
107
  #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
108
  ],
109
  outputs=gr.outputs.Image(type="filepath", label="Output Image"),
110
+ title="Smart Environmental Eye (SEE)",
111
+ examples=[['image1.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45]],
112
  cache_examples=True,
113
  theme='huggingface',
114
  )
115
 
116
 
117
+ video_interface = gr.Interface(
118
+ fn=video_fn,
119
+ inputs=[
120
+ gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
121
+ gr.inputs.Dropdown(
122
+ choices=[
123
+ "Aalaa/Yolov7_Visual_Pollution_Detection",
124
+ #"kadirnar/yolov7-v0.1",
125
+ ],
126
+ default="Aalaa/Yolov7_Visual_Pollution_Detection",
127
+ label="Model",
128
+ ),
129
+ ],
130
+ outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
131
+ # examples=[
132
+ # ["video.mp4", 0.25, 0.45, 0, 2],
133
+
134
+ # ],
135
+ title="Smart Environmental Eye (SEE)",
136
+ cache_examples=True,
137
+ theme='huggingface',
138
+
139
+ )
140
 
141
  if __name__ == "__main__":
142
  gr.TabbedInterface(
143
+ [image_interface, video_interface],
144
+ ["Run on Images", "Run on Videos"],
145
+ ).launch()