Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import yolov7
|
3 |
import subprocess
|
4 |
import tempfile
|
@@ -9,6 +10,12 @@ import cv2
|
|
9 |
import gradio as gr
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def image_fn(
|
14 |
image: gr.inputs.Image = None,
|
@@ -37,6 +44,51 @@ def image_fn(
|
|
37 |
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
image_interface = gr.Interface(
|
42 |
fn=image_fn,
|
@@ -45,6 +97,7 @@ image_interface = gr.Interface(
|
|
45 |
gr.inputs.Dropdown(
|
46 |
choices=[
|
47 |
"Aalaa/Yolov7_Visual_Pollution_Detection",
|
|
|
48 |
],
|
49 |
default="Aalaa/Yolov7_Visual_Pollution_Detection",
|
50 |
label="Model",
|
@@ -54,16 +107,39 @@ image_interface = gr.Interface(
|
|
54 |
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
55 |
],
|
56 |
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
57 |
-
|
58 |
-
examples=[['image1.jpg', '
|
59 |
cache_examples=True,
|
60 |
theme='huggingface',
|
61 |
)
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
if __name__ == "__main__":
|
66 |
gr.TabbedInterface(
|
67 |
-
[image_interface],
|
68 |
-
["Run on Images"],
|
69 |
-
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
#import torch
|
3 |
import yolov7
|
4 |
import subprocess
|
5 |
import tempfile
|
|
|
10 |
import gradio as gr
|
11 |
|
12 |
|
13 |
+
|
14 |
+
# # Images
|
15 |
+
# #torch.hub.download_url_t
|
16 |
+
# o_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
17 |
+
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
18 |
+
|
19 |
|
20 |
def image_fn(
|
21 |
image: gr.inputs.Image = None,
|
|
|
44 |
|
45 |
|
46 |
|
47 |
+
def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
|
48 |
+
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
|
49 |
+
start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
|
50 |
+
end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
|
51 |
+
|
52 |
+
suffix = Path(video_file).suffix
|
53 |
+
|
54 |
+
clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
|
55 |
+
subprocess.call(
|
56 |
+
f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
|
57 |
+
)
|
58 |
+
|
59 |
+
# Reader of clip file
|
60 |
+
cap = cv2.VideoCapture(clip_temp_file.name)
|
61 |
+
|
62 |
+
# This is an intermediary temp file where we'll write the video to
|
63 |
+
# Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
|
64 |
+
# with ffmpeg at the end of the function here.
|
65 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
|
66 |
+
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
|
67 |
+
|
68 |
+
num_frames = 0
|
69 |
+
max_frames = duration * 30
|
70 |
+
while cap.isOpened():
|
71 |
+
try:
|
72 |
+
ret, frame = cap.read()
|
73 |
+
if not ret:
|
74 |
+
break
|
75 |
+
except Exception as e:
|
76 |
+
print(e)
|
77 |
+
continue
|
78 |
+
print("FRAME DTYPE", type(frame))
|
79 |
+
out.write(model([frame], conf_thres, iou_thres))
|
80 |
+
num_frames += 1
|
81 |
+
print("Processed {} frames".format(num_frames))
|
82 |
+
if num_frames == max_frames:
|
83 |
+
break
|
84 |
+
|
85 |
+
out.release()
|
86 |
+
|
87 |
+
# Aforementioned hackiness
|
88 |
+
out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
|
89 |
+
subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
|
90 |
+
|
91 |
+
return out_file.name
|
92 |
|
93 |
image_interface = gr.Interface(
|
94 |
fn=image_fn,
|
|
|
97 |
gr.inputs.Dropdown(
|
98 |
choices=[
|
99 |
"Aalaa/Yolov7_Visual_Pollution_Detection",
|
100 |
+
#"kadirnar/yolov7-v0.1",
|
101 |
],
|
102 |
default="Aalaa/Yolov7_Visual_Pollution_Detection",
|
103 |
label="Model",
|
|
|
107 |
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
108 |
],
|
109 |
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
110 |
+
title="Smart Environmental Eye (SEE)",
|
111 |
+
examples=[['image1.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45]],
|
112 |
cache_examples=True,
|
113 |
theme='huggingface',
|
114 |
)
|
115 |
|
116 |
|
117 |
+
video_interface = gr.Interface(
|
118 |
+
fn=video_fn,
|
119 |
+
inputs=[
|
120 |
+
gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
|
121 |
+
gr.inputs.Dropdown(
|
122 |
+
choices=[
|
123 |
+
"Aalaa/Yolov7_Visual_Pollution_Detection",
|
124 |
+
#"kadirnar/yolov7-v0.1",
|
125 |
+
],
|
126 |
+
default="Aalaa/Yolov7_Visual_Pollution_Detection",
|
127 |
+
label="Model",
|
128 |
+
),
|
129 |
+
],
|
130 |
+
outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
|
131 |
+
# examples=[
|
132 |
+
# ["video.mp4", 0.25, 0.45, 0, 2],
|
133 |
+
|
134 |
+
# ],
|
135 |
+
title="Smart Environmental Eye (SEE)",
|
136 |
+
cache_examples=True,
|
137 |
+
theme='huggingface',
|
138 |
+
|
139 |
+
)
|
140 |
|
141 |
if __name__ == "__main__":
|
142 |
gr.TabbedInterface(
|
143 |
+
[image_interface, video_interface],
|
144 |
+
["Run on Images", "Run on Videos"],
|
145 |
+
).launch()
|