Spaces:
Runtime error
Runtime error
Aaryaparikh
commited on
Commit
•
a56e433
1
Parent(s):
807e081
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import re
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import time
|
6 |
+
import torch
|
7 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
8 |
+
# Streamlit app
|
9 |
+
st.title("Private Sample")
|
10 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
11 |
+
|
12 |
+
# Load the model
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
model = T5ForConditionalGeneration.from_pretrained('cssupport/t5-small-awesome-text-to-sql')
|
15 |
+
model = model.to(device)
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
def generate_sql(input_prompt):
|
19 |
+
# Tokenize the input prompt
|
20 |
+
inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device)
|
21 |
+
|
22 |
+
# Forward pass
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model.generate(**inputs, max_length=512)
|
25 |
+
|
26 |
+
# Decode the output IDs to a string (SQL query in this case)
|
27 |
+
generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
return generated_sql
|
30 |
+
prompt=st.text_input("Enter Prompt: ","get target from app saless")
|
31 |
+
button_clicked=st.button("Generate")
|
32 |
+
if button_clicked:
|
33 |
+
input_prompt = "tables:\n" + "CREATE TABLE AppDrug_allergy_dataset( Id,ExtraProperties,ConcurrencyStamp,CreationTime,CreatorId,LastModificationTime,LastModifierId,IsDeleted,DeleterId,DeletionTime,Drug_Name,Chemical_Structure,Immunogenecity,Individual_Sensitivity,Prior_Allergic_Reaction,Cross_Reactivity,Route_of_administration,Dose,Duration,Hypersensitivity_Reaction,Allergic) CREATE TABLE AppSaless( Id,ExtraProperties,ConcurrencyStamp,CreationTime, CreatorId,LastModificationTime,LastModifierId,IsDeleted,DeleterId,DeletionTime,Month,Target,Customers_,Revenue)" + "\n" +"query for:" + prompt
|
34 |
+
generated_sql = generate_sql(input_prompt)
|
35 |
+
print(f"The generated SQL query is: {generated_sql}")
|
36 |
+
# Test the function
|
37 |
+
#input_prompt = "tables:\n" + "CREATE TABLE Catalogs (date_of_latest_revision VARCHAR)" + "\n" +"query for: Find the dates on which more than one revisions were made."
|
38 |
+
#input_prompt = "tables:\n" + "CREATE TABLE table_22767 ( \"Year\" real, \"World\" real, \"Asia\" text, \"Africa\" text, \"Europe\" text, \"Latin America/Caribbean\" text, \"Northern America\" text, \"Oceania\" text )" + "\n" +"query for:what will the population of Asia be when Latin America/Caribbean is 783 (7.5%)?."
|
39 |
+
# input_prompt = "Retrieve the names of all employees who work in the IT department."
|
40 |
+
|
41 |
+
|
42 |
+
#OUTPUT: The generated SQL query is: SELECT student_id FROM students WHERE NOT student_id IN (SELECT student_id FROM student_course_attendance)
|
43 |
+
|
44 |
+
progress_bar = st.progress(0)
|
45 |
+
status_text = st.empty()
|
46 |
+
chart = st.line_chart(np.random.randn(10, 2))
|
47 |
+
|
48 |
+
for i in range(100):
|
49 |
+
# Update progress bar.
|
50 |
+
progress_bar.progress(i + 1)
|
51 |
+
|
52 |
+
new_rows = np.random.randn(10, 2)
|
53 |
+
|
54 |
+
# Update status text.
|
55 |
+
status_text.text(
|
56 |
+
'The latest random number is: %s' % new_rows[-1, 1])
|
57 |
+
|
58 |
+
# Append data to the chart.
|
59 |
+
chart.add_rows(new_rows)
|
60 |
+
|
61 |
+
# Pretend we're doing some computation that takes time.
|
62 |
+
time.sleep(0.1)
|
63 |
+
|
64 |
+
status_text.text('Done!')
|
65 |
+
st.balloons()
|