import streamlit as st import re import pandas as pd import numpy as np import time import torch from transformers import T5Tokenizer, T5ForConditionalGeneration # Streamlit app st.title("Private Sample") tokenizer = T5Tokenizer.from_pretrained('t5-small') # Load the model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained('cssupport/t5-small-awesome-text-to-sql') model = model.to(device) model.eval() def generate_sql(input_prompt): # Tokenize the input prompt inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device) # Forward pass with torch.no_grad(): outputs = model.generate(**inputs, max_length=512) # Decode the output IDs to a string (SQL query in this case) generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_sql prompt=st.text_input("Enter Prompt: ","get target from app saless") button_clicked=st.button("Generate") if button_clicked: input_prompt = "tables:\n" + "CREATE TABLE AppDrug_allergy_dataset( Id,ExtraProperties,ConcurrencyStamp,CreationTime,CreatorId,LastModificationTime,LastModifierId,IsDeleted,DeleterId,DeletionTime,Drug_Name,Chemical_Structure,Immunogenecity,Individual_Sensitivity,Prior_Allergic_Reaction,Cross_Reactivity,Route_of_administration,Dose,Duration,Hypersensitivity_Reaction,Allergic) CREATE TABLE AppSaless( Id,ExtraProperties,ConcurrencyStamp,CreationTime, CreatorId,LastModificationTime,LastModifierId,IsDeleted,DeleterId,DeletionTime,Month,Target,Customers_,Revenue)" + "\n" +"query for:" + prompt generated_sql = generate_sql(input_prompt) print(f"The generated SQL query is: {generated_sql}") # Test the function #input_prompt = "tables:\n" + "CREATE TABLE Catalogs (date_of_latest_revision VARCHAR)" + "\n" +"query for: Find the dates on which more than one revisions were made." #input_prompt = "tables:\n" + "CREATE TABLE table_22767 ( \"Year\" real, \"World\" real, \"Asia\" text, \"Africa\" text, \"Europe\" text, \"Latin America/Caribbean\" text, \"Northern America\" text, \"Oceania\" text )" + "\n" +"query for:what will the population of Asia be when Latin America/Caribbean is 783 (7.5%)?." # input_prompt = "Retrieve the names of all employees who work in the IT department." #OUTPUT: The generated SQL query is: SELECT student_id FROM students WHERE NOT student_id IN (SELECT student_id FROM student_course_attendance) progress_bar = st.progress(0) status_text = st.empty() chart = st.line_chart(np.random.randn(10, 2)) for i in range(100): # Update progress bar. progress_bar.progress(i + 1) new_rows = np.random.randn(10, 2) # Update status text. status_text.text( 'The latest random number is: %s' % new_rows[-1, 1]) # Append data to the chart. chart.add_rows(new_rows) # Pretend we're doing some computation that takes time. time.sleep(0.1) status_text.text('Done!') st.balloons()