File size: 7,648 Bytes
f90ddf2 702c069 2cd2753 702c069 2cd2753 702c069 95e206f f90ddf2 702c069 f90ddf2 7917eea f90ddf2 702c069 7917eea f90ddf2 702c069 f90ddf2 702c069 2cd2753 702c069 2cd2753 9b56f03 2cd2753 702c069 2cd2753 702c069 f90ddf2 2cd2753 7917eea f90ddf2 702c069 f90ddf2 702c069 2cd2753 702c069 f90ddf2 642ebc0 f90ddf2 702c069 2cd2753 702c069 2cd2753 702c069 2cd2753 702c069 2cd2753 702c069 2cd2753 702c069 f90ddf2 702c069 642ebc0 f33899f f90ddf2 642ebc0 f33899f 702c069 2cd2753 642ebc0 95e206f 702c069 f33899f 702c069 f33899f 702c069 f33899f 702c069 f33899f 702c069 9b56f03 702c069 9b56f03 702c069 9b56f03 702c069 c131eab 702c069 95e206f 702c069 b14ba8e 702c069 b14ba8e 702c069 f90ddf2 b14ba8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from torchvision.transforms import transforms, ToTensor
from torchvision.transforms import Resize
from torch.cuda.amp import autocast
import torch.nn.functional as F
from PIL import Image
import gradio as gr
import subprocess
import os
import torch
import cv2
from model import UNet
from frames import extract_frames
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def save_frames(tensor, out_path) -> None:
image = normalize_frames(tensor)
image = Image.fromarray(image)
image.save(out_path)
def normalize_frames(tensor):
tensor = tensor.squeeze(0).detach().cpu()
tensor = torch.clamp(tensor, 0.0, 1.0) # Ensure values are in [0, 1]
tensor = (tensor * 255).byte() # Scale to [0, 255]
tensor = tensor.permute(
1, 2, 0
).numpy() # Convert to [H, W, C] height width channels
return tensor
def laod_allframes(frame_dir):
frames_path = sorted(
[
os.path.join(frame_dir, f)
for f in os.listdir(frame_dir)
if f.endswith(".png")
],
key=lambda x: int(os.path.splitext(os.path.basename(x))[0].split("_")[-1]),
)
print(frames_path)
for frame_path in frames_path:
yield load_frames(frame_path)
def load_frames(image_path) -> torch.Tensor:
"""
Converts the PIL image(RGB) to a pytorch Tensor and loads into GPU
:params image_path
:return: pytorch tensor
"""
transform = transforms.Compose([Resize((720, 1280)), ToTensor()])
img = Image.open(image_path).convert("RGB")
tensor = transform(img).unsqueeze(0).to(device)
return tensor
def time_steps(input_fps, output_fps) -> list[float]:
"""
Generates Time intervals to interpolate between frames A and B
:param input_fps: Video FPS(Original)
:param output_fps: Target FPS(Output)
:return: List of intermediate FPS required between 2 Frames A and B
"""
if output_fps <= input_fps:
return []
k = output_fps // input_fps
n = k - 1
return [i / (n + 1) for i in range(1, n + 1)]
def interpolate_video(frames_dir, model_fc, input_fps, ouput_fps, output_dir):
os.makedirs(output_dir, exist_ok=True)
count = 0
iterator = laod_allframes(frames_dir)
try:
prev_frame = next(iterator)
for curr_frame in iterator:
interpolated_frames = interpolate(
model_fc, prev_frame, curr_frame, input_fps, ouput_fps
)
save_frames(
prev_frame, os.path.join(output_dir, "frame_{}.png".format(count))
)
count += 1
for frame in interpolated_frames:
save_frames(
frame[:, :3, :, :],
os.path.join(output_dir, "frame_{}.png".format(count)),
)
count += 1
prev_frame = curr_frame
save_frames(prev_frame, os.path.join(output_dir, "frame_{}.png".format(count)))
except StopIteration:
print("no more Frames")
def interpolate(model_FC, A, B, input_fps, output_fps) -> list[torch.Tensor]:
interval = time_steps(input_fps, output_fps)
input_tensor = torch.cat(
(A, B), dim=1
) # Concatenate Frame A and B to Compare difference
with torch.no_grad():
flow_output = model_FC(input_tensor)
flow_forward = flow_output[:, :2, :, :] # Forward flow
flow_backward = flow_output[:, 2:4, :, :] # Backward flow
generated_frames = []
with torch.no_grad():
for t in interval:
t_tensor = (
torch.tensor([t], dtype=torch.float32).view(1, 1, 1, 1).to(device)
)
with autocast():
warped_A = warp_frames(A, flow_forward * t_tensor)
warped_B = warp_frames(B, flow_backward * (1 - t_tensor))
interpolated_frame = warped_A * (1 - t_tensor) + warped_B * t_tensor
generated_frames.append(interpolated_frame)
return generated_frames
def warp_frames(frame, flow):
b, c, h, w = frame.size()
i, j, flow_h, flow_w = flow.size()
if h != flow_h or w != flow_w:
frame = F.interpolate(
frame, size=(flow_h, flow_w), mode="bilinear", align_corners=True
)
grid_y, grid_x = torch.meshgrid(
torch.arange(0, flow_h), torch.arange(0, flow_w), indexing="ij"
)
grid_x = grid_x.float().to(device)
grid_y = grid_y.float().to(device)
flow_x = flow[:, 0, :, :]
flow_y = flow[:, 1, :, :]
x = grid_x.unsqueeze(0) + flow_x
y = grid_y.unsqueeze(0) + flow_y
x = 2.0 * x / (flow_w - 1) - 1.0
y = 2.0 * y / (flow_h - 1) - 1.0
grid = torch.stack((x, y), dim=-1)
warped_frame = F.grid_sample(
frame, grid, align_corners=True, mode="bilinear", padding_mode="border"
)
return warped_frame
def frames_to_video(frame_dir, output_video, fps):
frame_files = sorted(
[f for f in os.listdir(frame_dir) if f.endswith(".png")],
key=lambda x: int(os.path.splitext(x)[0].split("_")[-1]),
)
print(frame_files)
for i, frame in enumerate(frame_files):
os.rename(
os.path.join(frame_dir, frame), os.path.join(frame_dir, f"frame_{i}.png")
)
frame_pattern = os.path.join(frame_dir, "frame_%d.png")
subprocess.run(
[ # run shell command
"ffmpeg",
"-framerate",
str(fps),
"-i",
frame_pattern,
"-c:v",
"libx264",
"-pix_fmt",
"yuv420p",
"-y",
output_video,
],
check=True,
)
# def solve():
# checkpoint = torch.load("SuperSloMo.ckpt")
# model_FC = UNet(6, 4).to(device) # Initialize flow computation model
# model_FC.load_state_dict(checkpoint["state_dictFC"]) # Load weights
# model_FC.eval()
# model_AT = UNet(20, 5).to(device) # Initialize auxiliary task model
# model_AT.load_state_dict(checkpoint["state_dictAT"], strict=False) # Load weights
# model_AT.eval()
# frames_dir = "output"
# input_fps = 59
# output_fps = 120
# output_dir = "interpolated_frames2"
# interpolate_video(frames_dir, model_FC, input_fps, output_fps, output_dir)
# final_video = "result6.mp4"
# frames_to_video(output_dir, final_video, output_fps)
# def main():
# solve()
# if __name__ == "__main__":
# main()
def process_video(video_path, output_fps):
# Ensure the output directory for frames exists
input_fps = extract_frames(video_path, "output_frames")
# Load model
model_FC = UNet(6, 4).to(device)
checkpoint = torch.load("SuperSloMo.ckpt", map_location=device)
model_FC.load_state_dict(checkpoint["state_dictFC"])
model_FC.eval()
# Interpolate video
output_dir = "interpolated_frames"
interpolate_video("output_frames", model_FC, input_fps, output_fps, output_dir)
# Generate output video
final_video_path = "result.mp4"
frames_to_video(output_dir, final_video_path, output_fps)
return final_video_path # Return the output video file path
interface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(label="Upload Input Video"),
gr.Slider(minimum=30, maximum=120, step=1, value=60, label="Desired Output FPS"),
],
outputs=gr.File(label="Download Enhanced Video"), # Change output to File
title="Video Frame Interpolation with SuperSloMo",
description="This application allows you to input a video and increase its frame rate by interpolation using a deep learning model.",
)
if __name__ == "__main__":
interface.launch()
|