File size: 1,525 Bytes
8575f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import streamlit as st
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer

# Load the model and tokenizer
model_name = "facebook/m2m100_418M"
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
model = M2M100ForConditionalGeneration.from_pretrained(model_name)

# Streamlit UI
st.title("English to Multiple Language Translator")
st.write("Translate English text into different languages using AI.")

# Input text
input_text = st.text_area("Enter English text:", value="")

# Language selection
language_options = {
    "French": "fr",
    "Spanish": "es",
    "German": "de",
    "Chinese": "zh",
    "Arabic": "ar",
    "Hindi": "hi",
    "Japanese": "ja",
    "Russian": "ru",
    "Portuguese": "pt",
    "Italian": "it"
}
selected_language = st.selectbox("Select target language:", list(language_options.keys()))

if st.button("Translate"):
    if input_text:
        # Set target language
        target_language = language_options[selected_language]
        tokenizer.src_lang = "en"
        encoded_input = tokenizer(input_text, return_tensors="pt")

        # Generate translation
        generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(target_language))
        translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

        # Display translated text
        st.write(f"**Translated text ({selected_language}):**")
        st.write(translated_text)
    else:
        st.write("Please enter text to translate.")