Spaces:
Runtime error
Runtime error
File size: 2,447 Bytes
2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff 2343433 dc61eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import gradio as gr
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
import torch
import peft
# Initialize the pipelines
text2img_pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
text2img_pipe.to("cuda")
text2img_pipe.load_lora_weights("AbdalrhmanRi/SDXL-Turbo-With-AppleVisionPro", weight_name="pytorch_lora_weights.safetensors")
img2img_pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
img2img_pipe.to("cuda")
img2img_pipe.load_lora_weights("AbdalrhmanRi/SDXL-Turbo-With-AppleVisionPro", weight_name="pytorch_lora_weights.safetensors")
def generate_image(prompt, init_image):
if init_image is None:
# Text-to-Image generation
output_image = text2img_pipe(
prompt,
num_inference_steps=40,
guidance_scale=2.0,
height=480
).images[0]
yield output_image, None
output_refiner_image = text2img_pipe(
prompt=prompt,
image=output_image,
guidance_scale=1.0,
height=480
).images[0]
yield output_image, output_refiner_image
else:
# Image-to-Image generation
init_image = init_image.resize((512, 512))
output_image = img2img_pipe(
prompt,
image=init_image,
num_inference_steps=40,
strength=0.5,
guidance_scale=2.0,
height=480
).images[0]
yield output_image, None
output_refiner_image = img2img_pipe(
prompt=prompt,
image=output_image,
strength=0.5,
guidance_scale=1.0,
height=480
).images[0]
yield output_image, output_refiner_image
# Define the Gradio interface
interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt", lines=2, placeholder="Enter your prompt here..."),
gr.Image(type="pil", label="Initial Image (Optional)", height=360)
],
outputs=[gr.Image(type="pil", label="Generated Image"), gr.Image(type="pil", label="Refined Image")],
title="Genrate Image Using Generative AI",
theme=gr.themes.Default(primary_hue="green"),
description="Text-to-Image or Image-to-Image Generation with SDXL-Turbo."
)
# Launch the interface
interface.launch() |