import torch from diffusers import AutoPipelineForText2Image import gradio as gr import peft MODEL_NAME = "stabilityai/sdxl-turbo" pipe = AutoPipelineForText2Image.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, variant="fp16") pipe.to("cuda") pipe.load_lora_weights("AbdalrhmanRi/SDXL-Turbo-With-AppleVisionPro", weight_name="pytorch_lora_weights.safetensors") def generate_image(prompt): image = pipe(prompt=prompt, guidance_scale=2.0, num_inference_steps=40, height=480) image = image.images[0] yield image, None refiner_image = pipe(prompt=prompt, image=image, guidance_scale=1.0, height=480) refiner_image = refiner_image.images[0] yield image, refiner_image # Set up the Gradio interface interface = gr.Interface( fn=generate_image, inputs=gr.components.Textbox(label="Prompt", lines=2, placeholder="Enter your prompt here..."), outputs=[gr.Image(type="pil", label="Generated Image"), gr.Image(type="pil", label="Refined Image")], title="Generate Image Using Generative AI", theme=gr.themes.Default(primary_hue="green") ) # Launch the interface interface.launch()