Spaces:
Running
Running
Update model_utils.py
Browse files- model_utils.py +2 -4
model_utils.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
-
import torch
|
3 |
|
4 |
-
# Use a basic small code model — change to any Hugging Face model you want
|
5 |
MODEL_NAME = "Salesforce/codegen-350M-multi"
|
6 |
|
7 |
def load_model():
|
@@ -9,7 +7,7 @@ def load_model():
|
|
9 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
10 |
return tokenizer, model
|
11 |
|
12 |
-
def
|
13 |
inputs = tokenizer(prompt, return_tensors="pt")
|
14 |
-
outputs = model.generate(**inputs, max_length=max_length)
|
15 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
2 |
|
|
|
3 |
MODEL_NAME = "Salesforce/codegen-350M-multi"
|
4 |
|
5 |
def load_model():
|
|
|
7 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
8 |
return tokenizer, model
|
9 |
|
10 |
+
def generate_deceptive_code(tokenizer, model, prompt, max_length=128):
|
11 |
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
+
outputs = model.generate(**inputs, max_length=max_length, do_sample=True, top_k=50, top_p=0.95)
|
13 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|