Spaces:
Runtime error
Runtime error
Commit
·
3899a9a
1
Parent(s):
5ed23cb
Rename HumanMotionsClassificationZiad.py to Train.py
Browse files
HumanMotionsClassificationZiad.py → Train.py
RENAMED
@@ -364,92 +364,6 @@ torch.save(model.state_dict(), 'model')
|
|
364 |
print('TRAINING COMPLETE')
|
365 |
|
366 |
|
367 |
-
# In[ ]:
|
368 |
-
|
369 |
-
|
370 |
-
#Testing.....................................
|
371 |
-
|
372 |
-
|
373 |
-
# In[43]:
|
374 |
-
|
375 |
-
|
376 |
-
import torch
|
377 |
-
import numpy as np
|
378 |
-
import argparse
|
379 |
-
import joblib
|
380 |
-
import cv2
|
381 |
-
import torch.nn as nn
|
382 |
-
import torch.nn.functional as F
|
383 |
-
import time
|
384 |
-
import albumentations
|
385 |
-
from torchvision.transforms import transforms
|
386 |
-
from torch.utils.data import Dataset, DataLoader
|
387 |
-
from PIL import Image
|
388 |
-
|
389 |
-
|
390 |
-
# In[44]:
|
391 |
-
|
392 |
-
|
393 |
-
aug = albumentations.Compose([
|
394 |
-
albumentations.Resize(224, 224),
|
395 |
-
])
|
396 |
-
|
397 |
-
|
398 |
-
# In[ ]:
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
# In[51]:
|
405 |
-
|
406 |
-
|
407 |
-
import cv2
|
408 |
-
cap = cv2.VideoCapture(r'C:\Users\abdul\Desktop\Research\work\mhamad syrian\ziad\dataVideos\bend\daria_bend.avi')
|
409 |
-
if (cap.isOpened() == False):
|
410 |
-
print('Error while trying to read video. Plese check again...')
|
411 |
-
# get the frame width and height
|
412 |
-
frame_width = int(cap.get(3))
|
413 |
-
frame_height = int(cap.get(4))
|
414 |
-
# define codec and create VideoWriter object
|
415 |
-
out = cv2.VideoWriter(str('output'), cv2.VideoWriter_fourcc(*'mp4v'), 30, (frame_width,frame_height))
|
416 |
-
|
417 |
-
|
418 |
-
# In[52]:
|
419 |
-
|
420 |
-
|
421 |
-
# read until end of video
|
422 |
-
while(cap.isOpened()):
|
423 |
-
# capture each frame of the video
|
424 |
-
ret, frame = cap.read()
|
425 |
-
if ret == True:
|
426 |
-
model.eval()
|
427 |
-
with torch.no_grad():
|
428 |
-
# conver to PIL RGB format before predictions
|
429 |
-
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
430 |
-
pil_image = aug(image=np.array(pil_image))['image']
|
431 |
-
pil_image = np.transpose(pil_image, (2, 0, 1)).astype(np.float32)
|
432 |
-
pil_image = torch.tensor(pil_image, dtype=torch.float).cuda()
|
433 |
-
pil_image = pil_image.unsqueeze(0)
|
434 |
-
|
435 |
-
outputs = model(pil_image)
|
436 |
-
_, preds = torch.max(outputs.data, 1)
|
437 |
-
|
438 |
-
cv2.putText(frame, lb.classes_[preds], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 200, 0), 2)
|
439 |
-
cv2.imshow('image', frame)
|
440 |
-
out.write(frame)
|
441 |
-
# press `q` to exit
|
442 |
-
if cv2.waitKey(27) & 0xFF == ord('q'):
|
443 |
-
break
|
444 |
-
else:
|
445 |
-
break
|
446 |
-
# release VideoCapture()
|
447 |
-
cap.release()
|
448 |
-
# close all frames and video windows
|
449 |
-
cv2.destroyAllWindows()
|
450 |
-
|
451 |
-
|
452 |
-
# In[ ]:
|
453 |
|
454 |
|
455 |
|
|
|
364 |
print('TRAINING COMPLETE')
|
365 |
|
366 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
|
369 |
|