import math import numpy as np import tensorflow as tf from tensorflow import keras import tensorflow_addons as tfa import matplotlib.pyplot as plt from tensorflow.keras import layers from tensorflow.keras.models import load_model from tensorflow import keras model = keras.models.load_model('https://github.com/abdulkader902017/CervixNet/blob/6217a51b73ff30724d50712545b2b62bec8a754e/my_model/saved_model.pb') response = requests.get("https://github.com/abdulkader902017/CervixNet/blob/main/labels.txt") labels = response.text.split("\n") def classify_image(inp): inp = inp.reshape((-1, 32, 32, 3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() confidences = {labels[i]: float(prediction[i]) for i in range(3)} return confidences gr.Interface(fn=classify_image, inputs=gr.Image(shape=(32, 32)), outputs=gr.Label(num_top_classes=3)).launch()