Abdullah-Basar commited on
Commit
92cc97c
·
verified ·
1 Parent(s): 9240abc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -27
app.py CHANGED
@@ -1,38 +1,95 @@
1
- import streamlit as st
2
- import joblib
3
- import numpy as np
4
- from sklearn.neighbors import KNeighborsClassifier
5
- from tensorflow.keras.preprocessing import image
6
  import os
 
 
7
  from PIL import Image
 
 
 
 
 
 
 
 
 
 
8
 
9
- # Load the pre-trained KNN model and class names
10
- knn = joblib.load('knn_model.pk1')
11
- class_names = joblib.load('class_names.pk1')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
- # Title of the app
14
- st.title("Animal Classification Using KNN Model")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- # Description
17
- st.write("Upload an image of an animal and the model will predict which animal it is.")
 
 
 
 
18
 
19
- # Upload image
20
- uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
 
 
21
 
22
- if uploaded_image is not None:
23
- # Display image
24
- img = Image.open(uploaded_image)
25
- st.image(img, caption='Uploaded Image.', use_column_width=True)
26
 
27
- # Preprocess the image for prediction
28
- img = img.resize((64, 64)) # Resize the image to match the model's expected size (adjust if needed)
29
- img_array = np.array(img) # Convert the image to numpy array
30
- img_array = img_array.flatten().reshape(1, -1) # Flatten the image and reshape it to match the input for KNN model
31
 
32
- # Make prediction
33
- prediction = knn.predict(img_array)
34
- predicted_class = class_names[prediction[0]]
 
 
 
 
 
 
 
 
 
 
35
 
36
- # Display prediction
37
- st.write(f"Prediction: {predicted_class}")
38
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import numpy as np
3
+ import joblib
4
  from PIL import Image
5
+ import streamlit as st
6
+ from sklearn.neighbors import KNeighborsClassifier
7
+ from sklearn.model_selection import train_test_split
8
+ from sklearn.metrics import accuracy_score
9
+
10
+ # Paths and global constants
11
+ #DATASET_PATH = "path_to_your_dataset" # Update with your dataset path
12
+ MODEL_PATH = "knn_model.pkl"
13
+ CLASS_NAMES_PATH = "class_names.pkl"
14
+ TARGET_SIZE = (64, 64)
15
 
16
+ # Helper function to load and preprocess dataset
17
+ def load_dataset(dataset_path, target_size):
18
+ images = []
19
+ labels = []
20
+ class_names = sorted(os.listdir(dataset_path)) # Sort for consistent class indexing
21
+ for idx, class_name in enumerate(class_names):
22
+ class_path = os.path.join(dataset_path, class_name)
23
+ if not os.path.isdir(class_path):
24
+ continue
25
+ for image_name in os.listdir(class_path):
26
+ image_path = os.path.join(class_path, image_name)
27
+ try:
28
+ img = Image.open(image_path).convert('RGB')
29
+ img = img.resize(target_size)
30
+ img_array = np.array(img).flatten() # Flatten to a single array
31
+ images.append(img_array)
32
+ labels.append(idx)
33
+ except Exception as e:
34
+ print(f"Error loading image {image_path}: {e}")
35
+ return np.array(images), np.array(labels), class_names
36
 
37
+ # Function to train and save KNN model
38
+ def train_and_save_model(dataset_path, target_size, model_path, class_names_path):
39
+ # Load data
40
+ X, y, class_names = load_dataset(dataset_path, target_size)
41
+ # Split dataset
42
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
43
+ # Train KNN model
44
+ knn = KNeighborsClassifier(n_neighbors=3)
45
+ knn.fit(X_train, y_train)
46
+ # Evaluate model
47
+ y_pred = knn.predict(X_test)
48
+ accuracy = accuracy_score(y_test, y_pred)
49
+ print(f"KNN Model Accuracy: {accuracy * 100:.2f}%")
50
+ # Save model and class names
51
+ joblib.dump(knn, model_path)
52
+ joblib.dump(class_names, class_names_path)
53
+ print(f"Model and class names saved to {model_path} and {class_names_path}")
54
+ return knn, class_names
55
 
56
+ # Preprocess image for prediction
57
+ def preprocess_image(image_path, target_size):
58
+ img = Image.open(image_path).convert('RGB')
59
+ img = img.resize(target_size)
60
+ img_array = np.array(img).flatten()
61
+ return img_array.reshape(1, -1) # Add batch dimension
62
 
63
+ # Main Streamlit app
64
+ def main():
65
+ st.title("Animal Classifier")
66
+ st.write("Upload an image of an animal to predict its category.")
67
 
68
+ # Load model and class names
69
+ if not os.path.exists(MODEL_PATH) or not os.path.exists(CLASS_NAMES_PATH):
70
+ st.error("Model or class names file not found. Please train the model first.")
71
+ return
72
 
73
+ knn = joblib.load(MODEL_PATH)
74
+ class_names = joblib.load(CLASS_NAMES_PATH)
 
 
75
 
76
+ # Upload image
77
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
78
+ if uploaded_file:
79
+ st.image(uploaded_file, caption="Uploaded Image", use_container_width=True)
80
+ try:
81
+ img_array = preprocess_image(uploaded_file, TARGET_SIZE)
82
+ if img_array.shape[1] != knn.n_features_in_:
83
+ st.error(f"Feature size mismatch: Model expects {knn.n_features_in_} features, but input has {img_array.shape[1]}.")
84
+ else:
85
+ prediction = knn.predict(img_array)
86
+ st.success(f"The predicted animal is: {class_names[prediction[0]]}")
87
+ except Exception as e:
88
+ st.error(f"Error processing image: {e}")
89
 
90
+ # Train and save model (Uncomment if running for the first time)
91
+ # train_and_save_model(DATASET_PATH, TARGET_SIZE, MODEL_PATH, CLASS_NAMES_PATH)
92
 
93
+ # Run Streamlit app
94
+ if __name__ == "__main__":
95
+ main()