File size: 3,987 Bytes
46129c7
 
 
 
 
 
ff23c82
 
59a8a6b
ff23c82
 
59a8a6b
ff23c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from groq import Groq
import os
from PIL import Image
import torch
from torchvision import transforms
import gradio as gr

# Replace 'your_api_key_here' with your actual Groq API key
GROQ_API_KEY = "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"

# Initialize the Groq client with the API key
client = Groq(api_key=GROQ_API_KEY)

# Placeholder for flood prediction model (open-source PyTorch model)
class FloodPredictionModel:
    def __init__(self):
        # Example: Load a pre-trained model (you should replace this with a flood prediction model)
        self.model = torch.hub.load("pytorch/vision:v0.10.0", "resnet18", pretrained=True)
        self.model.eval()

    def predict(self, image):
        # Preprocess the image
        preprocess = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])
        input_tensor = preprocess(image).unsqueeze(0)

        # Make prediction
        with torch.no_grad():
            outputs = self.model(input_tensor)
            _, predicted = outputs.max(1)
        return predicted.item()  # Placeholder: Replace with actual prediction logic


# Instantiate the flood prediction model
flood_model = FloodPredictionModel()


# Function to process user input and predict
def flood_prediction(image, user_query):
    # Debugging: Check if image is received correctly
    print("Received Image:", image)
    
    # Analyze the image with the flood prediction model
    try:
        prediction = flood_model.predict(image)
        prediction_text = (
            "Flood risk detected in the area!" if prediction == 1 else "No immediate flood risk detected."
        )
    except Exception as e:
        prediction_text = f"Error in flood prediction: {str(e)}"

    # Debugging: Check prediction result
    print("Flood Prediction Result:", prediction_text)

    # Use Groq's API for query-based interaction
    try:
        chat_completion = client.chat.completions.create(
            messages=[{"role": "user", "content": user_query}],
            model="llama-3.3-70b-versatile",
        )
        ai_response = chat_completion.choices[0].message.content
    except Exception as e:
        ai_response = f"Error with Groq API: {str(e)}"

    # Debugging: Check AI response
    print("AI Response:", ai_response)

    return prediction_text, ai_response


# Define the Gradio interface
with gr.Blocks() as flood_app:
    gr.Markdown("## 🌊 Flood Prediction App")
    gr.Markdown(
        """
        Welcome to the Flood Prediction App! This tool helps you analyze uploaded images
        to predict potential flood risks in the area. You can also interact with a powerful
        language model for further insights.
        
        ### Instructions:
        1. Upload an image of the area you want to analyze.
        2. Optionally, enter a query (e.g., "What are the risks of flooding in coastal areas?").
        3. Click **Predict Flood Risk** to get the results.
        """
    )

    with gr.Row():
        image_input = gr.Image(label="Upload Image", type="pil")
        user_query = gr.Textbox(label="Your Query (Optional)", placeholder="Ask about flood risks...")
    
    predict_button = gr.Button("Predict Flood Risk")
    
    with gr.Row():
        prediction_output = gr.Textbox(label="Flood Prediction")
        ai_response_output = gr.Textbox(label="AI Response")

    predict_button.click(
        flood_prediction, 
        inputs=[image_input, user_query], 
        outputs=[prediction_output, ai_response_output]
    )

    gr.Markdown(
        """
        ### Output Description:
        - **Flood Prediction**: Indicates whether there is a flood risk based on the uploaded image.
        - **AI Response**: Provides detailed insights or answers based on your query.
        """
    )

# Launch the app (for local testing or Google Colab)
flood_app.launch()