Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import faiss
|
8 |
+
from groq import Groq
|
9 |
+
|
10 |
+
# Load environment variables
|
11 |
+
load_dotenv()
|
12 |
+
GROQ_API_KEY = "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"
|
13 |
+
|
14 |
+
# Initialize Groq client
|
15 |
+
client = Groq(api_key=GROQ_API_KEY)
|
16 |
+
|
17 |
+
# Load the embedding model
|
18 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
19 |
+
|
20 |
+
# Streamlit UI
|
21 |
+
st.set_page_config(page_title="RAG-Based Application", layout="wide")
|
22 |
+
st.title("RAG-Based Application")
|
23 |
+
st.sidebar.header("Upload Your PDF")
|
24 |
+
|
25 |
+
uploaded_file = st.sidebar.file_uploader("Upload a PDF file", type=["pdf"])
|
26 |
+
|
27 |
+
if uploaded_file is not None:
|
28 |
+
try:
|
29 |
+
# Extract text from PDF
|
30 |
+
st.write("Extracting text from the PDF...")
|
31 |
+
reader = PdfReader(io.BytesIO(uploaded_file.read()))
|
32 |
+
text = "".join([page.extract_text() for page in reader.pages])
|
33 |
+
|
34 |
+
if not text.strip():
|
35 |
+
st.error("The uploaded PDF contains no text. Please upload a valid document.")
|
36 |
+
st.stop()
|
37 |
+
|
38 |
+
# Split the text into chunks
|
39 |
+
st.write("Processing the PDF into chunks...")
|
40 |
+
chunk_size = 500
|
41 |
+
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
42 |
+
|
43 |
+
# Create embeddings for the chunks
|
44 |
+
st.write("Creating embeddings for text chunks...")
|
45 |
+
embeddings = embedding_model.encode(chunks)
|
46 |
+
if len(embeddings.shape) == 1:
|
47 |
+
embeddings = embeddings.reshape(1, -1)
|
48 |
+
|
49 |
+
# Store embeddings in FAISS
|
50 |
+
st.write("Storing embeddings in FAISS...")
|
51 |
+
dimension = embeddings.shape[1]
|
52 |
+
index = faiss.IndexFlatL2(dimension)
|
53 |
+
index.add(embeddings)
|
54 |
+
st.write(f"Stored {len(chunks)} chunks in FAISS.")
|
55 |
+
|
56 |
+
# Ask a question
|
57 |
+
st.subheader("Ask a Question")
|
58 |
+
user_query = st.text_input("Enter your question:")
|
59 |
+
if user_query:
|
60 |
+
query_embedding = embedding_model.encode([user_query])
|
61 |
+
distances, indices = index.search(query_embedding, k=1)
|
62 |
+
best_chunk = chunks[indices[0][0]]
|
63 |
+
|
64 |
+
# Use Groq API to interact with the LLM
|
65 |
+
st.write("Interacting with the LLM...")
|
66 |
+
chat_completion = client.chat.completions.create(
|
67 |
+
messages=[
|
68 |
+
{
|
69 |
+
"role": "user",
|
70 |
+
"content": f"Using this context: {best_chunk}, answer the following question: {user_query}",
|
71 |
+
}
|
72 |
+
],
|
73 |
+
model="llama3-8b-8192",
|
74 |
+
)
|
75 |
+
|
76 |
+
# Display the response
|
77 |
+
st.subheader("LLM Response")
|
78 |
+
st.write(chat_completion.choices[0].message.content)
|
79 |
+
except Exception as e:
|
80 |
+
st.error(f"An error occurred: {e}")
|